Rapidstresser the bestIP booter / Stresser of 2021
Как ни странно, но когда меня (изредка) приглашают играть на бонго, ведущий не считает нужным объявить, что я занимаюсь еще и теоретической физикой. Я объясняю это тем, что искусство мы уважаем больше, чем науку. Художники Возрождения говорили, что интересовать человека должен прежде всего он сам, однако в мире немало других интересных предметов. Ведь и художники любуются закатами, волнами в океане, хороводом звезд на небе… Поэтому иногда не мешает поговорить и о таких вещах. Созерцая их, мы испытываем эстетическое наслаждение. Вместе с тем в явлениях природы есть формы и ритмы, не доступные глазу созерцателя, но открытые глазу аналитика. Эти формы и ритмы мы называем физическими законами. В своих лекциях я хочу поговорить об особенностях физического закона вообще – поднявшись, если хотите, на одну ступеньку выше самих законов. Передо мной все время будет картина природы, которая возникает после подробнейшего ее анализа, но говорить я буду лишь о самых общих, самых крупных мазках этой картины.
Если задуматься о приложениях математики и физики, то совершенно очевидно, что математика будет полезна там, где мы имеем дело с большим числом объектов в сложной обстановке. В биологии, к примеру, действие вируса на бактерию не дает никакой пищи для математики. В микроскоп мы увидим, что проворный маленький вирус находит какое-то место в причудливой бактерии (все они имеют разную форму) и либо вводит в нее свою ДНК, либо не вводит. Но если мы будем экспериментировать с миллионами и миллионами бактерий и вирусов, то сможем очень многое узнать о поведении вирусов в среднем. Мы можем использовать математику для того, чтобы находить среднее, для того, чтобы выяснить, развиваются ли вирусы в бактериях, какие виды развиваются и в каком количестве; подобным образом мы можем изучать генетику, мутации и т. п.
Изучая физику, вы обнаруживаете, что существует огромное количество сложных и очень точных законов – законы гравитации, электричества и магнетизма, законы ядерных взаимодействий и т. д. Но все это многообразие отдельных законов пронизано некими общими принципами, которые так или иначе содержатся в каждом законе. Примерами таких принципов могут служить законы сохранения, некоторые свойства симметрии, общая форма квантовомеханических принципов и тот приятный для одних и досадный для других факт, что все законы являются математическими. В этой лекции я хочу поговорить о законах сохранения.
Физик употребляет обычные слова необычным образом. Для него закон сохранения означает, что существует число, которое остается постоянным вне зависимости от того, когда вы его подсчитаете – скажем, сейчас или через некоторое время, после того как в природе произойдет множество изменений.
Для человеческого разума симметрия обладает, по-видимому, совершенно особой притягательной силой. Нам нравится смотреть на проявление симметрии в природе, на идеально симметричные сферы планет или Солнца, на симметричные кристаллы, на снежинки, наконец, на цветы, которые почти симметричны. Однако сейчас мне хотелось бы поговорить не о симметрии предметов, а о симметрии самих законов физики. Что такое симметрия предмета – понять легко, но может ли быть симметричным физический закон? Нет, конечно, но физики получают особое удовольствие от того, что берут самые обыденные слова и используют их для обозначения совсем других понятий. В нашем случае некоторые свойства физических законов казались им очень похожими на те свойства предметов, которые определяют их симметрию, и физики стали говорить о симметрии физических законов. Вот о ней-то и пойдет здесь речь.
Каждому ясно, что события, происходящие в нашем мире, явно необратимы. Другими словами, все происходит так, а не наоборот. Роняешь чашку, она разбивается, и сколько ни жди, черепки не соберутся снова и чашка не прыгнет обратно тебе в руки. А на берегу моря, где разбиваются волны, можно долго стоять и напрасно ждать того великого момента, когда пена соберется в волну, встанет над морем и покатится все дальше и дальше от берега – вот было бы зрелище!
На лекциях такие штуки обычно показывают при помощи кино: вырезают кусок кинопленки, на котором снята какая-то последовательность событий, и показывают его в обратном направлении, заранее рассчитывая на взрыв смеха. Этот смех свидетельствует о том, что в реальной жизни такого не бывает.
На первых шагах истории экспериментальных исследований или каких-нибудь других исследований, преследующих научные цели, разумные объяснения наблюдаемых явлений основывались на интуиции, которая сама базируется на простейшем опыте соприкосновения с обыденными объектами. Но по мере того как мы пытаемся расширить наши представления и добиться лучшего соответствия между нашими объяснениями и тем, что мы наблюдаем, по мере того как наше объяснение становится все более и более широким и нас начинает интересовать все более широкий круг явлений, то, что еще совсем недавно было простым наблюдением, становится физическим законом. При этом с ним происходит странная вещь: часто он становится все более и более внешне нелогичным и все дальше и дальше расходится с тем, что подсказывает интуиция.
Строго говоря, то, о чем я собираюсь говорить в этой лекции, нельзя назвать характеристикой законов физики. Когда мы рассуждаем о характере физических законов, мы можем по крайней мере предполагать, что говорим о самой природе. Но теперь мне хочется поговорить не столько о природе, сколько о нашем отношении к ней. Мне хочется рассказать вам о том, что мы считаем сегодня известным, что еще предстоит отгадать, и о том, каким образом угадывают законы в физике. Кто-то даже предложил, что лучше всего, если я по мере моего рассказа мало-помалу объясню вам, как угадать закон, а в заключение открою для вас новый закон. Не знаю, удастся ли мне это сделать.
Прежде всего я хочу рассказать вам о нынешнем состоянии физики, о том, что в ней сейчас известно. Вы могли бы подумать, что все это я уже вам рассказал, так как в предыдущих лекциях я изложил вам все основные известные законы.