ОСНОВНОЕ МЕНЮ

НАЧАЛЬНАЯ ШКОЛА

РУССКИЙ ЯЗЫК

ЛИТЕРАТУРА

АНГЛИЙСКИЙ ЯЗЫК

ИСТОРИЯ

БИОЛОГИЯ

ГЕОГРАФИЯ

МАТЕМАТИКА

ИНФОРМАТИКА

Миф семнадцатый: атомные электростанции – абсолютно безопасные и экологически чистые. Новый Чернобыль невозможен

 

Сперва немного о ядерных реакторах. Сегодня российские АЭС используют реакторы двух типов – РБМК и ВВЭР. В обоих топливом служит НОУ. Деление происходит на медленных нейтронах, и поэтому требуется замедлитель.

Теплоносителем служит вода. Электросиловая установка – обычная электрическая турбина, которую вращает перегретый пар: на его перегрев и расходуется ядерная энергия.

Первый из реакторов – так называемый реактор большой мощности канальный. Это реактор чернобыльского типа, электрической мощностью 1000 мегаватт (РБМК-1000) либо 1500 МВт (РБМК-1500). Реактор бескорпусный: в бетонной шахте располагается цилиндрическая графитовая кладка с вертикальными каналами, в которых размещаются тепловыделяющие сборки. Замедлителем нейтронов служит графит, загрузка ядерного материала – 192 тонны урана с обогащением по изотопу уран-235, равному 2,6 % (РБМК-1000). На реакторах РБМК в России получают около половины атомной энергии. После аварии на Чернобыльской АЭС новые блоки такого типа не сооружаются.

Сегодня и на ближайшую перспективу основной тип реактора – ВВЭР (водо-водяной энергетический реактор). Как теплоносителем, так и замедлителем нейтронов служит вода. Старые реакторы имели электрическую мощность 440 МВт (ВВЭР-440), современные – 1000 МВт (ВВЭР-1000). Цилиндрический корпус со сферическим днищем и крышкой рассчитан на давление пара 160 атмосфер. Размеры корпуса ВВЭР-1000: диаметр – 4,5 м, высота – 12 м, толщина стенки – 200 мм. Кстати, на изготовление корпуса весом более 300 тонн уходит не один год. Загрузка реактора – 66 тонн урана с обогащением изотопом урана-235 около 5 %.

По словам атомщиков, наши АЭС экологичны и безопасны. И такие утверждения сильно раздражают «зеленых», которые в ответ заявляют: «АЭС опасны до ужаса, они и безо всяких аварий загадили радиацией всю планету, и вообще их надо позакрывать». А что на самом деле?

В книгах можно встретить сравнение атомных электростанций с угольными теплоэлектростанциями (ТЭС). Упор делается на загрязнение атмосферного воздуха, в том числе канцерогенными веществами [1, 2].

Действительно, угольные ТЭС – экологически очень «грязные». Ведь каменный уголь содержит много токсичных и радиоактивных элементов: ртуть, свинец, кадмий, мышьяк, бериллий, ванадий, уран и торий (включая радиотоксичные продукты их распада, например, полоний), – чуть не всю систему Менделеева [2, 3]. При сжигании угля эта пакость концентрируется в золе. Уловить удаётся лишь грубую часть золы, а самые вредные аэрозольные частицы разлетаются на 20–90 километров.

А ещё угольные ТЭС выбрасывают огромное количество оксидов серы и азота, углекислого и угарного газа. Они рассеиваются по всему Северному полушарию. А ведь кислые газы снижают иммунитет, что в сочетании с канцерогенами повышает заболеваемость населения раком.

Да и радиоактивное загрязнение окружающей среды выбросами ТЭС в 12 раз выше, чем АЭС [1, 4].


i 077

Всё это истинная правда. Но… но есть в таком сопоставлении немного лукавства. А правильно ли сравнивать атомную энергетику с самыми экологически грязными – угольными ТЭС? В России, слава богу, хватает других энергоносителей: чуть не всю Европу газом снабжаем, да ещё и Китай собираемся. Если уж сравнивать, так со всеми реальными вариантами. А правильней – с требованиями радиационной и экологической безопасности.

Педантичные немецкие исследователи сопоставили разные способы получения энергии. Как они это сделали? Сначала оценили негативные последствия в расчёте на выработку одного миллиарда киловатт-часов для населения Западной Европы, около 480 миллионов человек. А потом весь негатив пересчитали на количество потерянных лет жизни. Для угольной электростанции учли потери от аварий на шахтах, карьерах и железных дорогах, по которым перевозят уголь, а также болезни населения от выбросов электростанций. Правда, выбросы европейских ТЭС, в отличие от российских, очищают от сернистого газа и оксидов азота. Для атомных электростанций учли последствия облучения персонала, причём не только на самой АЭС, но и на предприятиях ЯТЦ, а также облучение населения, плюс последствия возможных аварий. Результаты этих расчётов можно увидеть на рис. 17.1 (спаренные столбики разной высоты означают использование различных расчётных методик).


 36

Рис. 17.1 Общественный риск для здоровья от разных энергоисточников [5]


Вывод: чистой и безопасной энергии не существует. Но ядерная энергетика выигрывает у любых, даже газовых электростанций.

Теперь о радиационной безопасности при работе АЭС. Вы знаете, что предел техногенного облучения для населения составляет 1 мЗв/год. Чтобы уложиться в эту норму, иногда между АЭС и селитебной зоной (то есть территорией жилых застроек – от слова «селиться») устанавливают санитарно-защитную зону (СЗЗ). Эта «ничейная» земля, не более 3 км, является дополнительным барьером защиты населения от облучения. Поскольку в санитарно-защитной зоне никто не проживает, выполнение нормы гарантируется.

Но такой подход касается лишь территорий, где радиационный фон сложился давно, десятки лет назад. Для современных АЭС установлены более жёсткие ограничения на облучение населения, чем предусмотрено НРБ-99/2009 (1 мЗв/год). Санитарными правилами введены так называемые квоты на облучение населения от выбросов в атмосферу и жидких сбросов в водоёмы. Для любой действующей станции суммарная (от выбросов и сбросов АЭС) квота равна 250 мкЗв/год, а для проектируемых и строящихся АЭС – 100 мкЗв/год. Это соответственно в 4 и 10 раз ниже предела дозы техногенного облучения населения [6].

Но как проверить – действительно ли эти нормативы не превышаются?

С этой целью вокруг всех АЭС организована так называемая автоматизированная система контроля радиационной обстановки (АСКРО). На прилегающей территории устанавливают десятки датчиков для измерения мощности дозы гамма-излучения. Сведения от них каждый час передаются в кризисный центр концерна Росэнергоатом. И тут же, в режиме реального времени, размещаются на сайте www.russianatom.ru. Сегодня каждый человек может зайти в интернет и ознакомиться с радиационной обстановкой возле любой атомной станции. Радиационный фон – информация открытая, засекречивать её нельзя по закону. Поэтому скрыть радиационную аварию или превышение допустимого уровня радиации невозможно.


i 078

Однако на самом деле у атомных станций имеются целых две ахиллесовы пяты. Только речь идёт вовсе не об экологии или радиоактивном фоне.

Первое. Да, при нормальной работе АЭС всё замечательно. Но в случае тяжелой аварии последствия могут оказаться куда хуже, чем при авариях на электростанциях других типов. Поэтому проблема номер один – это безопасность атомных станций.

А проблема номер два – отработавшее топливо. ОЯТ – это двадцать тонн с каждого реактора ежегодно. Всего-то? Но это не безобидные головёшки, а сотни «хиросим». Об отработавшем топливе мы побеседуем в другой раз, когда будем обсуждать проблемы РАО, а сейчас обсудим вопросы безопасности атомных станций.

Вспомним, какие последствия имела чернобыльская катастрофа. Да, средние дозы, полученные населением СССР и Европы, оказались невысокими. Но это средняя температура по палате. А болезни сотен тысяч ликвидаторов, пусть и обусловленные не только радиацией? А сотни тысяч людей, переселённых с родных мест? А гигантские расходы на ликвидацию последствий, которые «съели» выгоду от использования атомной энергии за много лет? А радиофобия у всего советского населения? А рост антиядерного движения?


Дело в том, что дочернобыльские ядерные реакторы были основаны на технических принципах защиты [7]. Для предотвращения аварии требовалось принимать специальные меры. Иначе говоря, – строжайший контроль со стороны человека. А где имеется человеческий фактор – там угроза аварии остаётся.

Ведь и в Чернобыле реактор взорвался не сам по себе. По сути его взорвали операторы по приказу руководства станции. Пусть и с благими намерениями, ради завершения программы испытаний к предстоящим первомайским праздникам. Но были последовательно отключены все (!) системы защиты – в нарушение множества правил и инструкций. Но главное даже не в том, что инструкции были хорошие, а операторы действовали неверно. Как заметил академик Александров: «Человек совершил, а техника – позволила». Система безопасности, которая разрешила человеку себя отключить – беспомощная.

Другое дело – физические принципы защиты. Как плавкие предохранители в электротехнике. Превысил ток допустимое значение – металл расплавился – электрическая цепь разорвалась: сама собой, без участия человека.

Вот и ядерный реактор в идеале должен быть самозащищённым, с внутренне присущей безопасностью. И в этом направлении сделано немало. Сегодня ядерные реакторы снабжены четырьмя независимыми системами автоматической защиты, отключить которые невозможно. Используются пассивные системы безопасности, основанные на физических принципах защиты. Например, стержни аварийной защиты, способные погасить цепную реакцию, расположены уже не под блоком, а над ним. Подвешенные на электромагнитах, в случае отключения электроэнергии, они сами падают в активную зону и глушат реактор.

Но и такие системы не дают стопроцентной гарантии безопасности. В том числе – защиты от хорошо подготовленного террористического акта или военного нападения.

В этой связи современные реакторы (их называют «реакторы поколения 3+») снабжены дополнительными системами, способными смягчить последствия серьёзной аварии. Что это за системы?

Под реактором устанавливается так называемая ловушка расплава. А над реактором – герметичная защитная оболочка (контайнмент), которая в случае тяжёлой аварии не позволит радиоактивным веществам выйти наружу.

Правда, дополнительные системы защиты приводят к удорожанию проектов на 30 %. Но, как изрёк Уинстон Черчилль, правда, по другому поводу: «За безопасность надо платить, за отсутствие безопасности – расплачиваться».

Послушайте, такие проблемы! А, может, правы «зелёные»? Взять да и закрыть все атомные станции?


Сегодня это почти невозможно. Почему же? Мы, выражаясь конкретно, попали. Существует уровень развития техники, за которым людей уже ничто не остановит. К примеру, всем известно, что автомобиль – штука зловредная, враг номер один городской экологии. И чрезвычайно опасная: в автомобильных авариях только в России каждый год гибнет тридцать тысяч людей.

Представьте картину: через всю Россию с Запада на Восток проложена автострада, а вместо дорожных знаков «вдоль дороги мертвые стоят» – жертвы дорожно-транспортных происшествий только одного года. Через каждые триста метров! А за десять лет – через каждые тридцать метров! Только вдумайтесь: за десять лет российские автомобили убили больше людей, чем атомная бомбардировка Хиросимы и Нагасаки, вместе взятых! И что? Мы обсуждаем запрет автомобилей? Да как это – без машины? Не, наши люди на такси в булочную не ездят.

То же и в отношении ядерной энергетики: поезд ушёл. Взгляните, какой вклад вносят АЭС в обеспечение электроэнергией в разных странах (рис. 17.2).


 37

Рис. 17.2 Доля атомной энергии в электроэнергетике разных стран мира (Институт финансовых исследований – по данным Uranium Internation Center)



Да и общественность сегодня более лояльна к атомной энергии, чем после Чернобыля и сразу после Фукусимы. В России доля непримиримых противников атомной энергии снизилась с 40 % (2011 год) до 22 % (2013 год) [8]. В самой Японии перезапускают остановленные ядерные реакторы. Даже в Германии, где правительство из политических соображений традиционно заявляет об отказе от АЭС, осознают негативные экологические последствия перехода к ТЭС.


Подведём итоги.

Сегодня вероятность аварии на АЭС мизерная, но не нулевая. Атомные электростанции вовсе не идеальны. Но тепловые, особенно угольные – гораздо, гораздо хуже. А из двух зол, как известно, выбирают меньшее. Современная российская стратегия – «атомноориентированная»: не отказ от АЭС, а повышение уровня их безопасности.

Литература

1. Ядерная энергетика, человек и окружающая среда / Н.С. Бабаев и др. – Изд. 2-е, перераб и доп. – М.: Энергоатомиздат, 1984. – 312 с.

2. Крылов Д.А. Экологическая экспансия энергокомплекса. – Энергия, 1995, № 10. – С. 14–22.

3. Крылов Д.А., Путинцева В.Е. Газпром предупредил: газа на всех не хватит. – Энергия, 2002, № 4. – С. 2–8.

4. Кизильштейн Л.Я. Уголь и радиоактивность. – Химия и жизнь, 2006, № 2. – С. 24–29.

5. Кревитт В., Фридрих Р. Сравнение риска от различных источников электроэнергии. – Атомная техника за рубежом, 1998, № 5. – С. 15–21.

6. Санитарные правила проектирования и эксплуатации атомных станций (СП АС-03). Санитарные правила и гигиенические нормативы СанПиН 2.6.1.24–03, п. 5.6.

7. Алексашин П.П. и др. Развитие требований по безопасности и системы государственного надзора как основа государственного развития ядерной энергетики. – «Атомная энергия», 1987. Т. 63, вып. 5. – С. 306–310.

8. Синдром Фукусимы вылечили. Страна РОСАТОМ, № 11 (91) апрель 2013 / Новости.

 

Поиск

ФИЗИКА

ХИМИЯ

Поделиться

Яндекс.Метрика

Рейтинг@Mail.ru