ОСНОВНОЕ МЕНЮ

НАЧАЛЬНАЯ ШКОЛА

РУССКИЙ ЯЗЫК

ЛИТЕРАТУРА

АНГЛИЙСКИЙ ЯЗЫК

ИСТОРИЯ

БИОЛОГИЯ

ГЕОГРАФИЯ

МАТЕМАТИКА

ИНФОРМАТИКА

Энергетический обмен

Для жизнедеятельности организма необходима энергия. Растения аккумулируют солнечную энергию в органических веществах при фотосинтезе. В процессе энергетического обмена органические вещества расщепляются и энергия химических связей освобождается. Частично она рассеивается в виде тепла, а частично запасается в молекулах АТФ. У животных энергетический обмен протекает в три этапа.


Первый этап — подготовительный

Пища поступает в организм животных и человека в виде сложных высокомолекулярных соединений. Прежде чем поступить в клетки и ткани, эти вещества должны разрушиться до низкомолекулярных, более доступных для клеточного усвоения веществ.

На первом этапе происходит гидролитическое расщепление органических веществ, идущее при участии воды. Оно протекает под действием ферментов в пищеварительном тракте многоклеточных животных, в пищеварительных вакуолях одноклеточных, а на клеточном уровне — в лизосомах.

Реакции подготовительного этапа:

белки + H2O i 048 аминокислоты + Q;

жиры + H2O i 049 глицерин + высшие жирные кислоты + Q;

полисахариды i 050глюкоза + Q.

У млекопитающих и человека белки расщепляются до аминокислот в желудке и в двенадцатиперстной кишке под действием ферментов — пептидгидролаз (пепсина, трипсина, хемотрипсина). Расщепление полисахаридов начинается в ротовой полости под действием фермента птиалина, а далее продолжается в двенадцатиперстной кишке под действием амилазы. Там же расщепляются и жиры под действием липазы. Вся энергия, выделяющаяся при этом, рассеивается в виде тепла.

Образующиеся низкомолекулярные вещества поступают в кровь и доставляются ко всем органам и клеткам. В клетках они поступают в лизосому или непосредственно в цитоплазму. Если расщепление происходит на клеточном уровне в лизосомах, то вещество сразу же поступает в цитоплазму. На этом этапе происходит подготовка веществ к внутриклеточному расщеплению.

Второй этап — бескислородное окисление

Второй этап осуществляется на клеточном уровне при отсутствии кислорода. Он протекает в цитоплазме клетки. Рассмотрим расщепление глюкозы, как одного из ключевых веществ обмена в клетке. Все остальные органические вещества (жирные кислоты, глицерин, аминокислоты) на разных этапах втягиваются в процессы ее превращения.

Бескислородное расщепление глюкозы называется гликолизом. Глюкоза претерпевает ряд последовательных превращений (рис. 16).

i 051

Рис. 16. Схема процесса гликолиза

Вначале она преобразуется во фруктозу, фосфорилируется — активируется двумя молекулами АТФ и превращается во фруктозо-дифосфат. Далее молекула шестиатомного углевода распадается на два трехуглеродных соединения — две молекулы глицерофосфата (триозы). После ряда реакций они окисляются, теряя по два атома водорода, и превращаются в две молекулы пировиноградной кислоты (ПВК). В результате этих реакций синтезируются четыре молекулы АТФ. Так как первоначально на активацию глюкозы было затрачено две молекулы АТФ, то общий итог составляет 2АТФ. Таким образом, выделяющаяся при расщеплении глюкозы энергия частично запасается в двух молекулах АТФ, а частично расходуется в виде тепла. Четыре атома водорода, которые были сняты при окислении глицерофосфата, соединяются с переносчиком водорода НАД+ (никотинамид-динуклеотидфосфат). Это такой же переносчик водорода, как и НАДФ+, но участвует в реакциях энергетического обмена.

Обобщенная схема реакций гликолиза:

С6Н12O6 + 2НАД+ i 052 2С3Н4O3 + 2НАД · 2Н

2АДФ i 053 2АТФ

Восстановленные молекулы НАД · 2Н поступают в митохондрии, где окисляются, отдавая водород.

В зависимости от типа клеток, ткани или организмов пировиноградная кислота в бескислородной среде может превращаться далее в молочную кислоту, этиловый спирт, масляную кислоту или другие органические вещества. У анаэробных организмов эти процессы называются брожением.

Молочнокислое брожение:

С6Н12O6 (глюкоза) + 2НАД+ i 054 2С3Н4O3 (ПВК) + 2НАД · 2Н i 055 2С3Н6O3 (молочная кислота) + 2НАД+

Спиртовое брожение:

C6H12O6 (глюкоза) + 2НАД+ i 056 2С3Н4O3 (ПВК) + 2НАД · 2Н i 057 2С2Н5OH (этиловый спирт) + 2СO2 + 2НАД+


Третий этап — биологическое окисление, или дыхание

Этот этап протекает только в присутствии кислорода и иначе называется кислородным. Он протекает в митохондриях.

Пировиноградная кислота из цитоплазмы поступает в митохондрии, где теряет молекулу углекислого газа и превращается в уксусную кислоту, соединяясь с активатором и переносчиком коэнзимом-А (рис. 17). Образующийся ацетил-КоА далее вступает в серию циклических реакций. Продукты бескислородного расщепления — молочная кислота, этиловый спирт — также далее претерпевают изменения и подвергаются окислению кислородом. В пировиноградную кислоту превращается молочная кислота, если она образовалась при недостатке кислорода в тканях животных. Этиловый спирт окисляется до уксусной кислоты и связывается с КоА.

i 058

Рис. 17. Схема биологического окисления пировиноградной кислоты в митохондриях

Циклические реакции, в которых происходит преобразование уксусной кислоты, носят название цикла ди- и трикарбоновых кислот, или цикла Кребса, по имени ученого, впервые описавшего эти реакции. В результате ряда последовательных реакций происходит декарбоксилирование — отщепление углекислого газа и окисление — снятие водорода с образующихся веществ. Углекислый газ, образующийся при декарбоксилировании ПВК и в цикле Кребса, выделяется из митохондрий, а далее из клетки и организма в процессе дыхания. Таким образом, углекислый газ образуется непосредственно в процессе декарбоксилирования органических веществ. Весь водород, который снимается с промежуточных веществ, соединяется с переносчиком НАД+, и образуется НАД · 2Н. При фотосинтезе углекислый газ соединяется с промежуточными веществами и восстанавливается водородом. Здесь идет обратный процесс.

Общее уравнение декарбоксилирования и окисления ПВК:

2С3Н4O3 + 6Н2O + 10НАД+ i 059 6СO2 + 10НАД · 2Н.

Проследим теперь путь молекул НАД · 2Н. Они поступают на кристы митохондрий, где расположена дыхательная цепь ферментов. На этой цепи происходит отщепление водорода от переносчика с одновременным снятием электронов. Каждая молекула восстановленного НАД · 2Н отдает два водорода и два электрона. Энергия снятых электронов очень велика. Они поступают на дыхательную цепь ферментов, которая состоит из белков — цитохромов. Перемещаясь по этой системе каскадно, электрон теряет энергию. За счет этой энергии в присутствии фермента АТФ-азы синтезируются молекулы АТФ. Одновременно с этими процессами происходит перекачивание ионов водорода через мембрану на наружную ее сторону. В процессе окисления 12 молекул НАД · 2Н, которые образовались при гликолизе (2 молекулы) и в результате реакций в цикле Кребса (10 молекул), синтезируются 36 молекул АТФ. Синтез молекул АТФ, сопряженный с процессом окисления водорода, называется окислительным фосфорилированием. Этот процесс был впервые описан русским ученым В. А. Энгельгардтом в 1931 г.

i 060

Рис. 18. Окислительное фосфорилирование. Схема работы дыхательной цепи ферментов

Конечным акцептором электронов является молекула кислорода, поступающая в митохондрии при дыхании. Атомы кислорода на наружной стороне мембраны принимают электроны и заряжаются отрицательно. Положительные ионы водорода соединяются с отрицательно заряженным кислородом, и образуются молекулы воды. Вспомним, что кислород атмосферы образуется в результате фотосинтеза при фотолизе молекул воды, а водород идет на восстановление углекислого газа. В процессе энергетического обмена водород и кислород вновь соединяются и превращаются в воду.

Обобщенная реакция кислородного этапа окисления:

2С3Н4O3 + 4Н + 6O2 i 061 6СO2 + 6Н2O;

36АДФ i 062 36АТФ.

Итак, выход молекул АТФ при кислородном окислении в 18 раз больше, чем при бескислородном.

Суммарное уравнение окисления глюкозы на двух этапах:

С6Н12O6 + 6O2 i 063 6СO2 + 6Н2O + E 

Таким образом, при расщеплении глюкозы на двух этапах образуется суммарно 38 молекул АТФ, причем основная часть — 36 молекул — при кислородном окислении. Такой выигрыш энергии обеспечил преимущественное развитие аэробных организмов по сравнению с анаэробными.

Эффективность энергетического обмена

Общее количество энергии, выделившееся в процессе энергетического обмена, составляет 2880 кДж/моль. Из них часть рассеивается в виде тепла, а часть запасается в 38 молекулах АТФ. Энергия, запасенная в 1 моль АТФ, составляет 30,6 кДж/моль. В 38 молекулах АТФ запасается 38 30,6 = 1162,8 кДж/моль. Эффективность процесса дыхания составляет:

(1162,8: 2880) · 100 % = 40,37 %.

Таким образом, при аэробном окислении глюкозы запасается в виде АТФ 40,37 % энергии.

При анаэробном окислении образуются лишь две молекулы АТФ. Рассчитаем эффективность этого процесса. Общее количество энергии спиртового брожения составляет 210 кДж/моль. Эффективность спиртового брожения:

(2 — 30,6: 210) · 100 % = 29,14 %.

Общее количество энергии при молочнокислом брожении (гликолиз в мышцах) составляет 150 кДж/моль. Эффективность молочнокислого брожения:

(2 — 30,6: 150) · 100 % = 40,8 %.

Сравним эти данные с КПД различных двигателей. В лучших турбинах КПД использования энергии составляет 20–25 %. В двигателях внутреннего сгорания — 35 %. Эффективность окисления органических веществ в живых организмах не вызывает сомнения.

Процессы дыхания, или биологического окисления, и горения схожи по конечному результату, но не по сберегаемости энергии. При горении вся энергия переходит в световую и тепловую, ничего при этом не запасается. В процессе дыхания часть энергии сберегается в молекулах АТФ, которые впоследствии используются в реакциях пластического обмена при синтезе органических веществ.

Вопросы и задания для самоконтроля

1. АТФ — постоянный источник энергии для клетки. Его роль можно сравнить с ролью аккумулятора. Объясните, в чем заключается это сходство.

2. Что общего в реакциях превращения белков, жиров и углеводов в пищеварительном тракте человека? Как называются такие реакции? В каких органеллах клетки могут происходить аналогичные процессы расщепления?

3. Как используется организмом энергия, освобождающаяся на подготовительном этапе обмена?

4. Как продукты расщепления белков, жиров, углеводов доставляются к тканям и клеткам? Объясните механизм их транспорта через клеточную мембрану.

5. Сравните и оцените энергетическую эффективность двух типов брожения глюкозы. Сделайте вывод об эффективности анаэробного пути обмена веществ.

6. Опишите последовательность превращения пировиноградной кислоты в процессе биологического окисления. В результате каких реакций образуется углекислый газ? В каких органеллах клетки идут эти процессы?

7. Где и как используется кислород, поступающий в организм при дыхании? Где происходит образование молекул воды?

8. Как идет преобразование энергии, выделяющейся в процессе реакций кислородного этапа? Сравните количество образующихся молекул АТФ в результате циклических реакций и на дыхательной цепи. Объясните этот факт.

9. Как используется энергия электронов в процессе окислительного фосфорилирования? Почему этот процесс называется окислительным фосфорилированием? Назовите структуры митохондрий, в которых идут циклические реакции и окислительное фосфорилирование. Какие из этих реакций будут идти с большей скоростью? Ответ поясните.

10. АТФ синтезируется в митохондриях и хлоропластах. Объясните, в чем сходство и различие процессов, приводящих к синтезу этих молекул в органеллах.

 

Поиск

ФИЗИКА

ХИМИЯ

Поделиться

Яндекс.Метрика

Рейтинг@Mail.ru