ОСНОВНОЕ МЕНЮ

НАЧАЛЬНАЯ ШКОЛА

РУССКИЙ ЯЗЫК

ЛИТЕРАТУРА

АНГЛИЙСКИЙ ЯЗЫК

ИСТОРИЯ

БИОЛОГИЯ

ГЕОГРАФИЯ

МАТЕМАТИКА

ИНФОРМАТИКА

Вероятность и неопределенность – квантовомеханический взгляд на природу

На первых шагах истории экспериментальных исследований или каких-нибудь других исследований, преследующих научные цели, разумные объяснения наблюдаемых явлений основывались на интуиции, которая сама базируется на простейшем опыте соприкосновения с обыденными объектами. Но по мере того как мы пытаемся расширить наши представления и добиться лучшего соответствия между нашими объяснениями и тем, что мы наблюдаем, по мере того как наше объяснение становится все более и более широким и нас начинает интересовать все более широкий круг явлений, то, что еще совсем недавно было простым наблюдением, становится физическим законом. При этом с ним происходит странная вещь: часто он становится все более и более внешне нелогичным и все дальше и дальше расходится с тем, что подсказывает интуиция.

Приведем лишь один пример. В теории относительности утверждается, что если вы считаете, что два события произошли одновременно, то это всего лишь ваша личная точка зрения, а кто-то другой с тем же основанием может утверждать, что одно из этих явлений произошло раньше другого, так что понятие одновременности оказывается чисто субъективным. Конечно, иначе и быть не может, поскольку в нашей повседневной жизни мы имеем дело с огромными скоплениями частиц, очень медленными процессами и другими очень специфичными условиями, так что наш опыт дает нам лишь очень ограниченное представление о природе. Из непосредственного опыта можно почерпнуть сведения лишь об очень малой доле естественных явлений. И только при помощи очень тонких измерений и тщательно подготовленных опытов можно добиться более широкого взгляда на вещи. А тогда мы начинаем сталкиваться с неожиданностями. Мы наблюдаем совсем не то, что мы могли бы предположить, совсем не то, что мы себе представляли. Нам приходится сильнее напрягать свое воображение не для того, чтобы, как в художественной литературе, представить себе то, чего нет на самом деле, а для того, чтобы постичь то, что действительно происходит. Вот об этом-то я и хочу поговорить сегодня.

Начнем с истории изучения света. Сначала предполагалось, что свет очень похож на дождь из частиц, или корпускул, летящих как пули, выпущенные из ружья. Однако последующие исследования показали, что такое представление неверно и на самом деле свет ведет себя как волны, например как морские волны. Затем уже в XX веке, после дополнительных исследований, вновь стало казаться, что в очень многих случаях свет ведет себя как поток частиц. Наблюдая фотоэлектрический эффект, можно подсчитать число этих корпускул, теперь их называют фотонами. Когда электроны были только что открыты, казалось, что они ведут себя точно так же, как частицы (или пули). Проще простого. Но дальнейшие опыты, например с электронной дифракцией, показали, что они ведут себя как волны. И чем дальше шло время, тем более и более неясным становилось, как же они ведут себя – как корпускулы или как волны. Все выглядело то так, то этак.

Все нараставшая путаница была разрешена в 1925–1926 гг. открытием точных уравнений квантовой механики. Теперь мы знаем, как ведут себя электроны или свет. Но как я могу назвать такой характер поведения? Сказать, что они ведут себя как частицы, значило бы создавать у вас неправильное представление. То же самое получится, если я скажу, что они ведут себя как волны. Они ведут себя таким образом, что это ни в коей степени не напоминает что-либо из того, с чем вы сталкивались раньше. Ваш опыт, основанный на том, с чем вы сталкивались раньше, неполон. Просто-напросто все то, что происходит в очень маленьком масштабе, происходит совсем по-другому. Атом не подчиняется тем же законам, что и грузик, подвешенный на пружине и колеблющийся на ней. Его нельзя также рассматривать как миниатюрную Солнечную систему с крошечными планетами, вращающимися по орбитам. Нельзя его представить и в виде какого-то облака или тумана, окутывающего ядро. Просто он не похож на все, что вы видели до этого.

Правда, здесь есть по крайней мере одно обстоятельство, облегчающее наше положение. Электроны ведут себя в указанном отношении точно так же, как и фотоны. И те и другие ведут себя необычным образом, но зато одинаково.

В связи со всем этим, для того чтобы понять, как они ведут себя, потребуется немалая доля творческой фантазии. Ведь речь пойдет о чем-то, что в корне отличается от всего нам доселе известного. Уже из-за этого данная лекция будет самой трудной, поскольку она наиболее абстрактна и ее материал далек от нашего повседневного опыта. Но ничего не поделаешь. Если бы в своих лекциях, посвященных характеру физических законов, я обошел молчанием свойства микрочастиц, я заведомо не выполнил бы поставленной передо мной задачи. Эти свойства характерны абсолютно для всех элементарных частиц, они универсальны по своему характеру, так что если вы хотите слышать о характере физических законов, то мне необходимо поговорить о нем и в таком аспекте.

Правда, это не так-то просто. Но трудность здесь чисто психологическая – нас постоянно мучает вопрос «Как же так может быть?», в котором отражается неконтролируемое, но совершенно необоснованное стремление представить себе все посредством чего-то очень знакомого. Я не стану проводить никаких аналогий с чем-нибудь всем нам знакомым, а просто расскажу, как обстоит дело. Было время, когда газеты писали, что теорию относительности понимают только двенадцать человек. Мне лично не верится, что это правда. Возможно, было время, когда ее понимал всего один человек, так как только он разобрался в том, что происходит, и не написал еще об этом статьи. После же того, как ученые прочли эту статью, многие так или иначе поняли теорию относительности, и, я думаю, их было больше двенадцати. Но, мне кажется, я смело могу сказать, что квантовой механики никто не понимает. Так что не относитесь к этой лекции слишком серьезно, не думайте, что вам действительно необходимо понять ее содержание и построить себе какую-то мысленную модель. Передохните и попытайтесь просто поразвлечься.

Я собираюсь рассказать вам, как ведет себя Природа. И если вы просто согласитесь, что, возможно, она ведет себя именно таким образом, то вы увидите, что это очаровательная и восхитительная особа. Если сможете, не мучайте себя вопросом «Но как же так может быть?», ибо в противном случае вы зайдете в тупик, из которого еще никто не выбирался. Никто не знает, как же так может быть.

Итак, позвольте мне охарактеризовать поведение электронов или фотонов с типичной для квантовой механики точки зрения. Я буду пользоваться и сравнениями, и противопоставлениями. Если я попытаюсь ограничиться одними аналогиями, у нас ничего не выйдет. Здесь совершенно необходимо указывать не только на сходство с чем-то всем нам знакомым, но и на коренные отличия от всего нам знакомого. Поэтому я буду проводить сравнение и противопоставление сначала с поведением частиц, о которых я буду рассказывать на примере пуль, а затем с поведением волн на примере морских волн. Я собираюсь придумать один эксперимент и рассказать вам сначала, что получилось бы при таких условиях, если бы у нас были частицы, затем – что было бы, если бы это были волны, и, наконец, что происходит на самом деле в системе, где есть электроны или фотоны. Я разберу только этот эксперимент, который специально придуман таким образом, чтобы охватить все загадки квантовой механики и столкнуть вас со всеми парадоксами, секретами и странностями природы на все сто процентов. Оказывается, любой другой случай в квантовой механике всегда можно объяснить, сказав: «Помните наш эксперимент с двумя отверстиями? Здесь – то же самое». Вот я и собираюсь рассказать вам об опыте с двумя отверстиями. Именно в нем заключена основная загадка. Я не собираюсь ничего избегать. Я просто снимаю покровы с природы, с ее наиболее элегантных и трудноуловимых форм.


i 020

Рис. 30



Начнем с пуль (рис. 30). Пусть у нас имеется источник пуль, пулемет например, и перед ним установлен экран с отверстием, пропускающим пули, причем сам экран – это броневой щит. Теперь на большом расстоянии от первого щита поставим другой броневой щит с двумя отверстиями – те самые два знаменитых отверстия. Об этих отверстиях я буду говорить много раз, а поэтому назовем их отверстиями 1 и 2. Можно представить себе, что отверстия круглые, а на рисунке показаны лишь их сечения. На большом расстоянии от второго щита поставим еще и третий, позволяющий устанавливать в разных местах детектор (для пуль это будет просто ящик с песком), в котором пули застрянут, после чего их можно будет сосчитать. Теперь я буду проделывать такие опыты: я буду устанавливать свой детектор, или ящик с песком, в разных точках третьего щита, а затем подсчитывать, сколько пуль попадет в него. При этом я буду измерять расстояние между ящиком и какой-нибудь другой точкой на третьем щите, назову это расстояние x и постараюсь выяснить, что происходит, если наш ящик передвигать вверх и вниз. Но прежде всего я хотел бы кое-что изменить, заменив настоящие пули идеализированными. Во-первых, будем предполагать, что пулемет сильно дрожит и качается и, следовательно, пули летят не только в одном, но и в других направлениях. К тому же они могут рикошетировать от краев отверстий в броневых щитах. Во-вторых, мы договоримся, хотя это не так уж и важно, что у всех пуль одинаковая энергия и скорость. Но самая важная идеализация, благодаря которой наши пули совсем не будут похожи на реальные, такова: мы будем предполагать, что пули абсолютно не разрушаются, так что в нашем ящике мы найдем не куски свинца от пули, расщепившейся надвое, а целую пулю. Представьте себе неразбивающиеся пули или очень твердые пули и мягкую броню.

Первое, что мы заметим в нашем опыте с пулями, – это то, что все здесь происходит дискретными порциями. Например, энергия, поглощенная мишенью. Она может увеличиться только скачком на величину энергии одной пули: трах – и энергия увеличилась. Вы начинаете считать пули, и их одна, две, три, четыре – опять дискретные порции. Они все одинаковых размеров, и когда мы ставим наш ящик-детектор, в него либо попадает целая пуля, либо ничего не попадает. Более того, если взять два ящика, то в них не может войти одновременно по одной пуле, если только пулемет стреляет не слишком быстро и мы можем различить два последовательных выстрела. Замедлите темп стрельбы и проверяйте побыстрее оба ящика, и вы увидите: попасть одновременно в два ящика невозможно, потому что каждая пуля – это одна нерасчленяемая и опознаваемая порция.

Теперь я хочу выяснить, сколько пуль попадает в разные участки мишени в среднем за какой-нибудь период времени. Подождем, например, в течение часа, подсчитаем число пуль, попавших в наш ящик с песком, и усредним его. Теперь возьмем среднее число пуль, попавших в ящик за час, и назовем его вероятностью попадания, так как им определяется вероятность того, что, пройдя через щель, пуля попадает в какой-то определенный ящик. Конечно, число пуль, попадающих в ящик, будет меняться вместе с х. На диаграмме я отложу по горизонтали число пуль, попадающих в ящик, если его установить в определенном положении, за один час. В результате у меня получатся плавные кривые (см. рис. 30), так как, если ящик поместить непосредственно за отверстием, в него попадет много пуль, а если его несколько сместить в сторону, это число уменьшится, ибо теперь приходится рассчитывать на то, что пули отскочат от краев отверстия, и в конце концов число пуль, попадающих в ящик, спадет до нуля. Полученные кривые мы обозначим через N1, N2 и N12. Так, кривая N12 (где индексы указывают на то, что открыты и отверстие 1, и отверстие 2) дает число пуль, зарегистрированных нашим детектором за час, в случае когда открыты оба отверстия.

Хочу вам напомнить, что показанные на диаграмме числа не обязательно целые. Они могут принимать любые значения. Это может быть 2,5 пули в час, хотя сами пули и попадают в ящик только дискретными порциями. Когда я говорю «2,5 пули в час», я имею в виду только то, что за 10 часов в ящик попадет 25 пуль, а следовательно, их среднее количество за час составляет 2,5 пули. Конечно, все вы знаете шутку о том, что в средней американской семье два с половиной ребенка. При этом никто не утверждает, что есть семьи, в которых по полребенка, – дети определенно появляются на свет дискретными порциями. Тем не менее, если вычислить среднее число детей на семью, оно может оказаться и дробным. Точно так же число N12, число пуль, попадающих в ящик в среднем за час, не обязательно целое. На самом деле мы измеряем им лишь вероятность попадания, как по-научному называется среднее число попаданий за единицу времени.

Наконец, рассматривая кривую N2, мы можем заметить, что ее легко интерпретировать как сумму двух других кривых: одной, которую я обозначу через N1 и которая описывает число попаданий, если отверстие 2 закрыто броневой заслонкой, и другой, N2, описывающей число попаданий при открытом отверстии 2 и закрытом отверстии 1. А это позволяет обнаружить очень важный закон: число попаданий при двух открытых отверстиях представляет собой простую сумму числа попаданий через одно отверстие 1 и числа попаданий через одно отверстие 2. Это утверждение, этот факт, что вам нужно просто сложить два числа, мы станем обозначать словами «отсутствие интерференции»:

N12 = N1 + N2 (отсутствие интерференции).

i 021

Рис. 31



Но хватит о пулях, и, покончив теперь с пулями, начнем все с самого начала, на этот раз с морскими волнами (рис. 31). Источником теперь служит большая масса, которую подымают и опускают вверх и вниз в воде. Броневые щиты заменим на длинный ряд барж или дамбу с проходом для воды. Возможно, все это легче понять на примере с обычной зыбью, чем с большими океанскими волнами. По крайней мере этот пример выглядит более разумным. Я могу просто болтать пальцем в воде, вызывая волнение, а в качестве экрана можно взять деревянную доску с отверстием, через которое волнение станет передаваться остальной воде. Затем установим еще одну доску с двумя отверстиями, а за ней еще и детектор. Что же мы собираемся измерять теперь? Детектор должен обнаружить степень волнения воды. Например, в воду можно бросить пробку и наблюдать за тем, как высоко она подымается и опускается на волнах. Я наблюдаю при этом за энергией колебаний пробки, но она в точности пропорциональна энергии, принесенной волнением. Еще одна деталь: болтать пальцем нужно очень равномерно, чтобы все волны были на равном расстоянии друг от друга. Говоря о таких волнах, прежде всего важно отметить, что величина, которую мы здесь измеряем, может принимать любые значения. Мы измеряем интенсивность волнения, или энергию колебаний пробки, и если волнение очень слабое, если я только слегка болтаю пальцем, то пробка будет колебаться еле-еле. Но при любой величине колебаний пропорциональность сохраняется. Колебания пробки могут быть любыми – они не увеличиваются дискретными порциями, и здесь нельзя сказать, что либо они есть, либо их нет.

Итак, мы собираемся измерять интенсивность волнения, или, точнее говоря, энергию, генерируемую волнением в некоторой точке. Так как же меняется эта интенсивность, которую я стану обозначать I12, чтобы постоянно напоминать вам, что речь идет именно об интенсивности, а не о числе каких-либо частиц? Кривая I12, соответствующая двум открытым отверстиям, показана на диаграмме (рис. 31). Это очень интересная и внешне сложная кривая. Если мы станем менять положение детектора, мы получим интенсивность, меняющуюся очень быстро и очень странным образом. Возможно, вы знаете, чем это объясняется. Дело здесь в том, что волнение образуется из последовательности гребней и впадин, идущих из отверстия 1, и другой последовательности гребней и впадин, идущих из отверстия 2. Когда мы находимся в точке, равноотстоящей от обоих отверстий, обе волны (идущие от обоих отверстий) достигают своего максимума одновременно, и поэтому волнение здесь очень велико. Так что, если мы находимся точно посредине, волнение очень сильное. Если же поместить детектор в какую-нибудь точку, находящуюся от отверстия 2 на большем расстоянии, чем от отверстия 1, то волне, идущей из отверстия 2, понадобится больше времени, чтобы добраться до этой точки, чем волне, идущей от отверстия 1. Поэтому в тот момент, когда в эту точку приходит гребень очередной волны, идущей от отверстия 1, волна, идущая от отверстия 2, может еще не достичь своего максимума и даже может быть в самой низшей точке, так что под действием одной волны вода пытается подняться, а под действием другой – опуститься, в результате чего она вообще не волнуется, или практически не волнуется. Так что в этой точке мы наблюдаем низкую интенсивность волнения. Затем, если сдвинуться от центра еще дальше, наступает момент, когда запаздывание между волнами от двух источников таково, что гребни обеих волн попадают в нашу точку одновременно, хотя один из этих гребней и принадлежит на самом деле следующей по порядку волне. Вот поэтому мы и получаем кривую, на которой за всплеском интенсивности следует провал, потом опять всплеск, опять провал… и все это в зависимости от характера «интерференции» гребней и впадин. Понятие интерференции – еще один пример необычного употребления повседневных слов[25]. В физике возможна такая интерференция, в результате которой суммарное волнение оказывается сильнее индивидуальных. Но самое важное, что I12 не получается в виде суммы I1 и I2. Интерференция между двумя волнами приводит к усилению интенсивности в одном месте и к ослаблению в другом. Выяснить, на что похожи кривые I1и I2, можно, закрывая по очереди одно из отверстий во втором экране и оставляя другое открытым. Очевидно, что в этом случае никакой интерференции нет, и соответствующие кривые показаны на рис. 31. Как нетрудно заметить, I1 имеет тот же характер, что и N1 в задаче с пулями, а I2 похожа на N2 и, несмотря на это, I12 не имеет ничего общего с N12.

Математика образования I12 на самом деле довольно интересна. Дело в том, что высота воды, которую мы будем обозначать через h, в случае когда открыты оба отверстия, равна сумме высот, создаваемых волнением в случае одного открытого отверстия 1 и в случае одного открытого отверстия 2. Поэтому, если из отверстия 2 приходит впадина волны, соответствующая высота h отрицательна, и она компенсирует положительную высоту h для волны, пришедшей из отверстия 1. Волнение воды можно характеризовать ее высотой, но оказывается, что интенсивность волнения в любом случае, например, тогда, когда открыты оба отверстия, не совпадает с высотой воды в данной точке, а пропорциональна квадрату этой высоты. И именно потому, что мы имеем дело с квадратами, получаем наши очень интересные кривые:

h12 = h1 + h2,

но

I12 ≠ I1 + I2 (интерференция),

I12 = (h12)2,

I1 = (h1)2,

I2 = (h2)2.

Это о волнении воды. Теперь об электронах (рис. 32), и снова с самого начала. В качестве источника возьмем накаленную нить, в качестве экранов – вольфрамовые пластинки с отверстиями, а в качестве детектора – любую электрическую систему с чувствительностью, достаточной для того, чтобы зарегистрировать заряд, приносимый электроном, независимо от мощности нашего источника. Если вам больше нравится, мы можем взять фотоны, вместо вольфрамовых пластинок – черную бумагу (но, по правде говоря, это будет не очень хорошая замена, ибо в бумаге, как и во всяком другом волокнистом материале, невозможно сделать отверстия с очень ровными краями, и нам придется поискать что-нибудь получше), а в качестве детектора выбрать фотоумножитель, регистрирующий приход каждого фотона. Так что же произойдет в том или другом случае? Я расскажу вам лишь об опыте с электронами, потому что для фотонов все получается точно таким же образом.


i 022

Рис. 32



Прежде всего мы заметим, что наш электрический детектор, на выходе которого мы поставим достаточно мощный усилитель, все время щелкает: электроны попадают в него дискретно, строго по порциям. Каждый щелчок – это заряд определенной величины, и эта величина все время постоянна. Если вы уменьшите накал источника, щелчки будут все реже, но все равно заряд каждого щелчка тот же, что и раньше. Если же усилить накал, щелчки посыплются, как из мешка, и в усилителе возникнет затор. Поэтому, для того чтобы прибор, который вы собираетесь использовать в качестве детектора, работал, нужно выбрать такой накал нити, при котором щелчки происходили бы не слишком часто. Затем, если поместить в другом месте другой точно такой же детектор и проследить за их работой одновременно, можно заметить, что никогда не бывает двух щелчков, происходящих одновременно, по крайней мере если накал достаточно слаб, точность фиксации времени щелчка удовлетворительна. Если уменьшить интенсивность источника так, чтобы щелчки стали редкими и достаточно разнесенными друг от друга, то одновременных щелчков в обоих детекторах не бывает. А это значит, что возникающие события происходят дискретно, порциями, и что в данный момент времени такая порция может находиться лишь в одном месте. Итак, электроны или фотоны попадают в детектор по одному, дискретно, порциями. Поэтому мы можем поступить так же, как и в случае с пулями: мы можем измерить вероятность появления. Для этого нам нужно периодически менять положение детектора (конечно, если хочется, мы можем, хотя это и дорого, установить целую серию детекторов на поверхности последнего экрана и снимать кривую одновременно во всех точках), оставляя его в каждой конкретной точке, скажем, в течение часа, и записывать в конце этого часа число зарегистрированных электронов, а затем усреднить это число. Так что же мы получим для числа зарегистрированных электронов? Кривую N12 того же типа, что и в опыте с пулями? Кривая N12, соответствующая случаю, когда оба отверстия открыты, показана на рис. 32. Как видите, экспериментально установлено, что эта кривая оказывается такой же, как и в опыте с интерференцией волн. Но чему же соответствует эта кривая? Не энергии, заключенной в волнении, а вероятности попадания одной из этих порций в детектор.

Соответствующие математические выкладки чрезвычайно просты. Мы заменили I на N, так что нам придется заменить h на что-то другое, совсем новое, – это никакая не высота, – в связи с чем мы и придумаем параметр а, который будем называть амплитудой вероятности, так как мы все равно не знаем, что это значит. Тогда через a1 обозначим амплитуду вероятности попадания сквозь отверстие 1, а через а2 – амплитуду вероятности попадания сквозь отверстие 2. А для того чтобы определить амплитуду полной вероятности попадания, нужно сложить обе эти амплитуды, а сумму возвести в квадрат. Это будет точной имитацией того, что происходит с волнами, а пользоваться теми же математическими выкладками мы стали в этом случае потому, что результирующая кривая получается в нашем случае точно такой же, как и в опыте с волнами.

Теперь мне нужно проверить еще один факт: выяснить, есть ли здесь интерференция или нет. Ведь мы пока еще не говорили, что происходит, если закрыть одно из отверстий. Попытаемся проанализировать получающуюся любопытную кривую, предполагая, что электроны попадают в детектор либо через одно отверстие, либо через другое. Закроем одно из отверстий и измерим, сколько электронов попадает в различные участки последнего экрана через отверстие 1. В результате получим простую кривую N1. Точно так же мы можем закрыть второе отверстие, измерить число электронов, попадающих в детектор через отверстие 2, и получим кривую N2. Тем не менее, если открыть оба отверстия, мы не получим суммы N1 + N2, так что интерференция действительно есть. Значит, в самом деле нужно при математических выкладках пользоваться этой странной формулой, согласно которой вероятность попадания равна квадрату амплитуды, которая, в свою очередь, представляет собой сумму двух слагаемых: N12 = (a1 + a2)2. Вопрос как раз и заключается в том, как же так может быть, что если электроны проходят лишь через отверстие 1, они оказываются распределенными одним образом, когда они проходят лишь через отверстие 2, они распределяются по-другому, но тем не менее в том случае, когда открыты оба отверстия, не получается суммы двух этих распределений. Например, если детектор установить в положении q и открыть оба отверстия, в него практически ничего не попадет, но в то же время стоит мне закрыть одно из них, детектор начнет работать независимо от того, какое из отверстий было закрыто. Опять откроем оба отверстия, и вновь ничего. Мы позволили электронам пролетать в детектор через оба отверстия, а они сразу перестали прилетать совсем. Или выберем точку строго посредине: нетрудно убедиться, что здесь число прилетающих электронов больше суммы электронов, прилетающих через каждое отверстие по отдельности. Кажется, если подумать хорошенько, всегда можно найти какое-то объяснение: например, электроны могут возвращаться обратно через те же отверстия, а затем проходить через них еще раз, или с ними происходит какой-нибудь другой сложный процесс, или возникает возможность расщепления электрона на два, пролетающих через разные отверстия, или что-нибудь в этом роде, как-то объясняющее это явление. Но пока еще никому не удалось придумать удовлетворительное объяснение такого рода, потому что конечный вид математических закономерностей очень уж прост (суммарная кривая получается очень простой (см. рис. 32)).

Теперь подведем итог. Итак, электроны попадают в детектор дискретными порциями, как если бы это были частицы, но вероятность попадания этих частиц определяется по тем же законам, по каким определяется интенсивность волнения воды. Именно в этом смысле можно говорить, что с одной точки зрения электрон ведет себя как частица, а с другой – как волна. Он ухитряется одновременно быть двумя совершенно разными понятиями (см. табл. 2).

Вот и все, что можно сказать по этому поводу.

Я мог бы привести сейчас математическое описание того, как вычислять вероятность попадания электрона при произвольных обстоятельствах, и в принципе на этом можно было бы закончить лекцию. Но в том, что природа ведет себя именно так, а не иначе, есть несколько тонкостей. Мы сталкиваемся с целым рядом непонятных явлений, и именно о них мне и хотелось бы поговорить сейчас, поскольку они не вытекают сразу же из того, что рассказано мной выше.



Таблица 2


Начнем с одного утверждения, казалось бы разумного, поскольку мы установили дискретный характер электронов или фотонов. Так как в детектор приходит нечто целое (электрон в нашем примере), по-видимому, разумно предположить, что электрон попадает в детектор либо через отверстие 1, либо через отверстие 2. Кажется очевидным, что, так как электрон нечто целое и неделимое, ничего другого и не может быть. Назовем это утверждение утверждением А.

Утверждение А:

Электрон попадает в детектор

либо через отверстие 1,

либо через отверстие 2.



На самом деле мы уже немного говорили о том, что происходит с утверждением А. Если бы было верно, что электрон попадает в детектор либо через отверстие 1, либо через отверстие 2, то общее число зарегистрированных электронов должно было бы распадаться на сумму электронов двух типов. Общее число этих электронов было бы суммой числа электронов, прилетевших через первое отверстие, и числа электронов, прилетевших через второе. Но так как суммарную кривую не удается представить таким удобным образом в виде суммы двух других кривых и поскольку эксперимент, позволяющий регистрировать прилетающие электроны в случае, когда открыто только одно отверстие, показывает, что в случае двух отверстий мы не наблюдаем суммы двух вероятностей появления, приходится заключить, что это утверждение неверно. Но если неверно, что электрон попадает в детектор либо через отверстие 1, либо через отверстие 2, может быть, он временно распадается на две половины или что-нибудь в этом роде. Итак, утверждение А ложно. Такова логика. К сожалению или нет, но логику можно проверять экспериментально. Теперь нам нужно решить, что же происходит на самом деле. Попадает ли электрон в детектор либо через отверстие 1, либо через отверстие 2, или, может быть, он успевает проскочить каждое из отверстий по нескольку раз в разных направлениях, или расщепляется временно на две части, или что-нибудь другое в этом же духе.

Нам нужно всего лишь понаблюдать за поведением электронов. А для этого нам нужен свет. Поэтому за отверстиями мы и поместим очень мощный источник света. Электроны рассеивают свет, который отражается от них, и, если свет достаточно силен, вы сможете заметить пролетающие электроны. Отойдем теперь назад и попытаемся увидеть, что происходит в момент регистрации электрона или на какую-то долю секунды до этого. Наблюдается ли вспышка за отверстием 1 или 2, или, быть может, так сказать, по полвспышки за каждым из этих отверстий? Ведь это позволит нам, наблюдая, найти, что же происходит в самом деле. Итак, включим свет, начнем наблюдать, и вот тебе на – каждый раз перед щелчком нашего детектора вспыхивает только одно отверстие – либо 1, либо 2. Оказывается, всегда, абсолютно во всех случаях, электрон, когда мы за ним наблюдаем, попадает в детектор либо через отверстие 1, либо через отверстие 2. Парадокс!

Постараемся теперь загнать природу в угол. Сейчас я вам расскажу, что для этого нужно сделать. Мы оставим наш источник света включенным и станем одновременно и наблюдать за вспышками, и считать число пролетающих электронов. Из результатов этих наблюдений составим два столбца: один – в котором мы станем отмечать электроны, пролетевшие через отверстие 1, и другой – регистрирующий электроны, пролетевшие через отверстие 2, а по мере того как будет щелкать наш детектор, станем отмечать в этих столбцах, какой из электронов попал в него. Так как же будет выглядеть столбец 1, после того как я сложу все результаты, соответствующие одному и тому же положению детектора? Что я увижу, если я наблюдаю лишь за отверстием 1? Я получу кривую N1 (рис. 32). Этот столбец оказывается распределенным точно так же, как если бы мы считали, что второе отверстие закрыто. Здесь ничего не меняется от того, наблюдаем мы за полетом электронов или нет. Если мы закроем отверстие 2, получим то же распределение прилетающих электронов, какое мы получаем, оставляя его открытым и наблюдая за отверстием 1. То же самое получается в результате наблюдения за отверстием 2; на этот раз получается кривая N2. Но, послушайте, суммарное число зарегистрированных детектором электронов должно быть суммой. Оно должно равняться сумме числа N1 и числа N2, так как относительно каждого из пролетевших отверстия электронов известно, какому, первому или второму, столбцу он принадлежит. Суммарное число зарегистрированных электронов просто не может быть ничем другим, кроме суммы этих двух чисел. Оно должно распределяться как N1 + N2. Но ведь мы говорили, что оно распределено как N12. Нет, оно распределено как N1 + N2. Конечно, на самом деле так оно и есть. Так должно быть, и так оно и есть. Если мы пометим штрихом величины, относящиеся к опыту с зажженным светом, то окажется, что практически не отличается от N1 для опыта без источника света, a очень мало отличается от N2. Но число, наблюдаемое в случае, когда свет горит и оба отверстия открыты, равно сумме числа частиц, которые мы видели пролетающими через отверстие 1, и числа электронов, пролетевших, как мы видели, через отверстие 2. Вот к какому результату мы приходим, включив свет. Значит, в зависимости от того, включим мы свет или нет, мы получим разные результаты. Зажжем свет, и распределение будет описываться кривой N1 + N2. Выключим свет, и распределение сразу примет вид N12. Включим его снова, и снова получим N1 + N2. Вы видите, природа опять вывернулась! Приходится говорить, что свет влияет на результат. Если свет включен, то вы получите другой результат, чем если бы он был выключен. Вы можете еще сказать, что свет влияет на поведение электронов. Если мы станем говорить об экспериментальном исследовании движения электронов, что не совсем точно сказано, то можно утверждать, что свет влияет на это движение, в результате чего электроны, которые сами по себе попали бы в верхнюю часть последнего экрана, отклоняются, так сказать, сбиваются со своей траектории и попадают в нижнюю часть, сглаживая распределение таким образом, что в результате получается просто-напросто сумма N1 + N2.

Электроны очень чувствительны. Когда вы смотрите на бейсбольный мяч и видите, как он сверкает на солнце, это ничего не значит, его траектория от этого не меняется. Но если свет падает на электрон, он сталкивает его с пути, и, вместо того чтобы делать одно, электрон делает совсем другое. Ведь вы включили свет, да к тому же такой сильный. Предположим тогда, что мы попытаемся ослабить этот свет все больше и больше, пока он не станет совсем тусклым, и воспользуемся очень чувствительными детекторами, позволяющими наблюдать очень тусклые вспышки при очень слабом освещении. Свет становится все слабее и слабее, а очень и очень слабый свет не должен бы изменять поведение электронов настолько сильно, что это радикальным образом отразится на картине распределения, изменив ее с N12 на N1 + N2. По мере того как свет становится все более тусклым, картина все больше и больше должна напоминать то, что мы получили в отсутствие света. Так как же происходит преобразование одного распределения в другое? Прежде всего свет – это не морская волна. Свет также ведет себя как поток частиц, называемых фотонами, и по мере уменьшения интенсивности света вы не ослабляете эффекта, а уменьшаете число фотонов, испускаемых источником. Ослабляя свет, я получаю все меньше и меньше фотонов. Самое меньшее, что может рассеиваться на электроне, – это один фотон, и если число имеющихся в нашем распоряжении фотонов слишком мало, некоторые электроны проскакивают через отверстие в тот момент, когда поблизости нет ни одного фотона, а в этом случае я его и не увижу. Поэтому слабый свет не значит, что мы используем маленькое возмущение, а значит только, что у нас мало фотонов. В результате, если свет достаточно слаб, мне придется ввести третий столбец для электронов, которые я «не увидел». Если свет очень яркий, в третий столбец попадает лишь несколько электронов, если он очень слаб – почти все. Итак, у нас оказалось три столбца: для отверстия 1, для отверстия 2 и для незамеченных электронов. Нетрудно догадаться, что получится у нас теперь. Замеченные электроны распределены как N1 + N2, а те, которые я не увидел, – как N12. По мере того как я делаю свет все слабее и слабее, все большую и большую часть электронов заметить мне так и не удается. А реально полученное распределение представляет собой смесь этих двух кривых, так что по мере ослабления света оно все более напоминает N12 и переход этот совершается непрерывно.

Здесь я не имею возможности говорить о всех бесконечно разнообразных методах, которые можно было бы придумать для выяснения того, через какое отверстие пролетел зарегистрированный электрон. Но каждый раз оказывается, что невозможно поставить свет таким образом, чтобы можно было, с одной стороны, сказать, через какое отверстие пролетает наш электрон, а с другой – не исказить картины распределения регистрируемых электронов, не нарушить характера интерференции. И так происходит не только со светом, а с чем угодно, чем бы мы ни пользовались. Просто это принципиально невозможно. Конечно, можно, если хотите, изобрести целый ряд методов обнаружения, и каждый из них будет показывать, что электрон пролетает либо через одно отверстие, либо через другое. Но если вы попытаетесь построить ваш прибор таким образом, чтобы при этом он еще и не влиял на движение электрона, вы добьетесь лишь того, что вновь не сможете сказать, через какое же отверстие пролетел электрон, и результаты ваших наблюдений вновь окажутся запутанными.

Когда Гейзенберг открывал законы квантовой механики, он заметил, что эти новые законы природы оказываются непротиворечивыми только в том случае, если можно принять, что наши экспериментальные возможности принципиально ограничены некоторым образом, хотя мы и не замечали этого ранее. Другими словами, в эксперименте нельзя добиться по желанию сколь угодно большой чувствительности. В связи с этим Гейзенберг предложил свой принцип неопределенности, который по отношению к описанному выше эксперименту выглядит следующим образом (Гейзенберг сформулировал его по-другому, но обе формулировки эквивалентны, и от одной можно перейти к другой): «Нельзя сконструировать какой-либо прибор, при помощи которого можно было бы определить, через какое из отверстий пролетит электрон, не изменив при этом его движения настолько, что это разрушит интерференционную картину». И еще никому не удалось обойти этот принцип. Уверен, что у вас просто чешутся руки, так вам хочется изобрести новый метод, позволяющий обнаружить, через какое отверстие пролетел электрон. Но после тщательного исследования любого из методов окажется, что он не годится. Вам покажется, что вы знаете, как это сделать, не влияя на электрон, но вы увидите, что всегда есть какая-нибудь загвоздка и что всегда различие в наблюдаемых картинах можно объяснить влиянием приборов, предназначенных для определения того, через какое отверстие пролетел электрон.

Это одна из основных характеристик природы, и она говорит нам кое-что обо всем. Если завтра найдут новую частицу, каон, – по правде говоря, каон уже найден, но ведь новую частицу нужно как-то назвать, так что назовем ее каоном, – я воспользуюсь каонами для того, чтобы при их помощи определить, через какое отверстие пролетит электрон. Я знаю заранее – по крайней мере я надеюсь, что это так, – вполне достаточно о свойствах этой еще не известной мне частицы, чтобы быть уверенным в том, что она не может сказать мне, через какое отверстие пролетел электрон, и не изменить при этом картины с интерференционной на безынтерференционную. Поэтому принципом неопределенности можно пользоваться как общим принципом, позволяющим предсказывать наперед многие характеристики неизвестных объектов. Вероятные свойства таких объектов не могут быть какими угодно.

Вернемся к нашему утверждению А – «электрон должен пролететь либо через отверстие 1, либо через отверстие 2». Правильно это или нет? Физики научились обходить западни. Они взяли за правило думать следующим образом. Если у вас есть прибор, позволяющий определять, через какое отверстие пролетел электрон (а такой прибор можно сделать), то вы можете утверждать, что он пролетает либо через одно отверстие, либо через другое. Так оно и происходит: когда вы следите за электроном, он пролетает либо через одно отверстие, либо через другое. Но если у вас нет такого прибора, то вы и не можете сказать, что он пролетает либо через одно отверстие, либо через другое. (Вернее, всегда можно сказать, что это так, если вы на этом сразу остановитесь и не станете делать из этого какие-либо выводы. Физики же предпочитают просто не говорить этого, вместо того чтобы говорить и не делать никаких выводов.) Исходить же из того, что электрон пролетает либо через одно отверстие, либо через другое, когда вы этого не видите, значило бы основывать свои предсказания на ошибочной предпосылке. Вот тот логический канат, на котором приходится балансировать, если мы хотим заниматься объяснением явлений природы.

Утверждение, о котором мы говорим, носит самый общий характер. Оно относится не только к опыту с двумя отверстиями, и его можно сформулировать в общем виде следующим образом. Вероятность любого события в идеальном эксперименте – т. е. эксперименте, где все определено настолько точно, насколько только это возможно, – равна квадрату некоторой другой величины а, которую мы назвали амплитудой вероятности. Если это событие может происходить в нескольких взаимно исключающих вариантах, то амплитуда вероятности а получается как сумма значений а для каждого из возможных вариантов (альтернатив). Но если в нашем эксперименте можно выяснить каждый раз, в каком именно варианте произошло событие, вероятность события меняется: теперь это просто сумма вероятностей каждого из вариантов. Другими словами, интерференция уничтожается.

Но остается нерешенным вопрос: а как же так получается? Каким образом все так выходит? К сожалению, этого никто не знает. Никто не сможет дать вам более глубокого объяснения явления, чем то, какое я вам только что дал, а ведь я всего лишь описал его вам. Можно лишь расширить объяснение, приведя больше примеров, показывающих, что действительно невозможно, не разрушая интерференционной картины, узнать, через какое отверстие пролетел электрон. Можно рассказать про более широкий круг экспериментов, а не только об одном опыте с двумя отверстиями и интерференцией двух картинок. Но это значило бы лишь повторять одно и то же снова и снова, пытаясь заставить вас поверить в реальность рассказываемого. Такие объяснения ничуть не глубже, они лишь шире. Конечно, можно уточнить математические выкладки, можно сказать, что здесь нужно пользоваться комплексными, а не вещественными числами, отметить одну или две другие второстепенные детали, не имеющие прямого отношения к основной идее. Но настоящая загадка заключается в том, о чем я вам только что рассказал, и сегодня никто не знает, как здесь можно копнуть глубже.

До сих пор мы занимались вычислением вероятности попадания электрона. Возникает вопрос: а можно ли каким-либо образом узнать, куда же на самом деле попадает каждый отдельный электрон? Конечно, мы не прочь использовать теорию вероятностей, т. е. подсчитывать наши шансы, в очень сложной ситуации. Когда мы подбрасываем монету, то, учитывая всякие сопротивления, все эти атомы и другие подобные сложности, мы вполне допускаем, что наших знаний недостаточно для точного предугадывания. Поэтому мы удовлетворяемся вычислением шансов того или иного исхода. Но ведь в опытах с электронами речь идет совсем не об этом – здесь мы предполагаем, не правда ли, что вероятность лежит в самой основе всего, что подсчет шансов начинается уже с фундаментальных законов физики.

Предположим, я так организовал мой эксперимент, что при выключенном свете наблюдается интерференционная картина. Тогда я могу сказать, что, даже включив свет, я не смогу предсказать, через какое отверстие пролетит электрон. Я только знаю, что каждый раз, когда я увижу его, он будет либо в одном отверстии, либо в другом, но предсказать, в каком именно, заранее невозможно. Другими словами, будущее здесь непредсказуемо. Никаким способом невозможно предсказать, пользуясь любой информацией, полученной заранее, через какое отверстие пролетит электрон или в каком отверстии мы его увидим. Это значит, что физика в некотором смысле отбросила задачу, если только такая задача и стояла вначале (всем казалось, что так оно и было!) – собрать достаточно сведений для того, чтобы при известных условиях суметь предсказать, что за этим последует. Вот вам условия опыта: источник электронов, источник сильного света, вольфрамовый экран с двумя отверстиями – а ну-ка скажите мне, за каким из отверстий я увижу следующий электрон. Согласно одной из теорий это невозможно потому, что за всем этим скрывается очень сложный процесс: какие-то внутренние маховички, зубчатые колесики, что-то еще, и в зависимости от того, в каком они сейчас состоянии, электрон полетит либо через одно отверстие, либо через другое. Вероятности того и другого события равны, поскольку, как и в опыте с монетой, состояние всей этой «машины» зависит от случая. И когда наша физика будет полной, мы сможем предсказывать, через какое отверстие полетит электрон. Это называют теорией скрытых параметров. Такая теория не может быть правильной. Мы не можем предсказывать совсем не потому, что нам не хватает подробностей.

Я уже сказал, что, когда свет не включен, у меня должна получаться интерференционная картина. Если же при данных условиях наблюдается интерференционная картина, то ее невозможно анализировать, рассуждая, что этот электрон пролетел через первое отверстие, а этот – через второе, поскольку интерференционная кривая предельно проста и в то же время совершенно не похожа на сумму двух других распределений вероятности. Но если бы мы могли определить, через какое отверстие полетит электрон при включенном свете, то уже не имело бы никакого значения, включен этот свет на самом деле или выключен. Каково бы ни было устройство источника электронов, позволяющее нам предсказывать, через какое отверстие полетит электрон, нам удалось бы проследить за ним, не включая света, и, следовательно, сказать, не включая света, через какое отверстие он прошел. Но если так, то суммарное распределение не может не распадаться на сумму распределений электронов, прошедших через отверстие 1, и электронов, прошедших через отверстие 2, а на самом деле этого нет. Поэтому в любом случае, когда эксперимент выявляет интерференцию электронов при выключенном свете, невозможно допустить, чтобы мы могли заранее получать информацию о том, через какое отверстие пролетит электрон при включенном или при выключенном свете. Так что вовсе не незнанием внутреннего механизма, внутренней сложности источника электронов объясняется появление вероятностных законов природы. По-видимому, это в какой-то степени неотъемлемое свойство природы. Кто-то выразился об этом так: «Даже сама природа не знает, по какому пути полетит электрон».

Один философ сказал: «Для самого существования науки совершенно необходимо, чтобы в одних и тех же условиях всегда получались одни и те же результаты». Так вот, этого не получается. Вы сможете точно воспроизвести все условия, и все-таки не сможете предсказать, в каком отверстии вы увидите электрон. Тем не менее, несмотря на это, наука жива, хотя в одних и тех же условиях не всегда получаются одни и те же результаты.

Что совершенно необходимо «для самого существования науки» и каковы характеристики природы – все это определяется не напыщенными декларациями, а тем материалом, с которым мы имеем дело, – самой природой. Мы наблюдаем и видим то, что нам удалось узнать, и мы не можем заранее правильно предсказать, на что это будет похоже. Самые правдоподобные домыслы часто не соответствуют реальному положению вещей. И если наука должна двигаться вперед, то что нам действительно необходимо, так это возможности экспериментирования, честность в сообщениях о результатах, – о них нужно сообщать, не обращая внимания на то, какими их кто-то хотел бы видеть, – и наконец, и это очень и очень важно, умение разумно интерпретировать результаты. При этом нельзя держаться предвзятого мнения и говорить: «Это мало-правдоподобно, мне это не нравится». Предвзятое мнение и абсолютная уверенность – это далеко не одно и то же. Конечно, я говорю не об абсолютной предвзятости, а только о простом предубеждении. Если вы просто предубеждены, это не так уж и важно, ибо если ваша точка зрения неверна, постоянное накопление опровергающих свидетельств начнет действовать вам на нервы, и настанет момент, когда вы уже не сможете отмахиваться от них. Поэтому в действительности для самого существования науки совершенно необходимо вот что – светлые умы, не требующие от природы, чтобы она удовлетворяла каким-то заранее придуманным условиям, как того требует наш философ.

 

Поиск

ФИЗИКА

ХИМИЯ

Поделиться

Яндекс.Метрика

Рейтинг@Mail.ru