ОСНОВНОЕ МЕНЮ

НАЧАЛЬНАЯ ШКОЛА

РУССКИЙ ЯЗЫК

ЛИТЕРАТУРА

АНГЛИЙСКИЙ ЯЗЫК

ИСТОРИЯ

БИОЛОГИЯ

ГЕОГРАФИЯ

МАТЕМАТИКА

ИНФОРМАТИКА

Звук и слух в живой природе

Животные воспринимают звук не так, как человек. Каждый из видов имеет свой средний диапазон частот звуковых волн, на которые животное может реагировать.

Мы расскажем о тех животных, которых обычно выделяют из всего ряда тех, кто поет, и тех, кто слушает. Это, прежде всего, самые певучие создания – птицы; немые создания, по нашему восприятию, – рыбы. Невозможно не упомянуть и о домашней любимице – кошке.

i 111


Виртуозные музыканты

Птицы действительно самые виртуозные музыканты из всех животных. Дело в том, что они обладают достаточно оригинально устроенным «музыкальным инструментом». Как и у человека, голосовой аппарат птиц относится к духовому «музыкальному инструменту», потому что звук в нем создается благодаря движению воздуха, выдыхаемого из легких. При этом воздушная струя вызывает колебания упругих перепонок, что и порождает звуковые волны. (У человека такими перепонками являются голосовые связки, расположенные в гортани.)

Любой музыкальный инструмент, кроме источника звука, должен иметь один или несколько резонаторов для усиления этого звука. У человека такими резонаторами является глотка, ротовая и носовая полости, а также трахея.


i 112

Очень долго считали, что голосовой аппарат у птиц устроен таким же образом. Однако оказалось, что у пернатых певцов не одна гортань, а целых две: верхняя (как у млекопитающих) и нижняя, не характерная для других животных. Причем нижняя играет главную роль в создании звуков у птиц. Нижняя гортань устроена достаточно сложно и так заметно отличается у птиц разных видов, что ученые до сих пор бьются над выявлением механизма ее работы.


i 113

Птичья гортань имеет не один, как у млекопитающих, а два или даже четыре вибратора, работающих независимо друг от друга. Располагается эта система в нижней части трахеи, там, где трахея разветвляется на два бронха. Вот такой сложный голосовой аппарат у птиц, благодаря которому они исполняют свои виртуозные песни. Образование у птиц второй гортани в нижнем отделе трахеи дало возможность использовать трахею как мощный резонатор.


i 114

У многих птиц трахея сильно разрастается, увеличиваясь в длину и в диаметре. Увеличиваются в объеме и бронхи птиц. Движениями тела и натяжением специальных мышц птица может довольно сильно изменять форму всей этой сложной системы резонатора и таким образом управлять высотой звука и тембровыми свойствами своего голоса.

Ритмические характеристики звука зависят от работы верхней гортани, выполняющей роль своеобразного стоп-крана на пути звукового потока и работающей в рефлекторном содружестве с нижней гортанью.

Голосовой аппарат птиц (гортань вместе с резонаторами) по своим размерам занимает значительную часть тела, и особенно это характерно для небольших птиц. Поэтому до процесса пения вовлекается весь организм. Все тельце птички дрожит от напряжения, шейка вытянута, маленький клювик широко открыт, давая простор звукам, переполняющим птичью грудь. Пение целиком захватывает птицу!

В начале 1960-х годов в голосе птиц были обнаружены ультразвуковые обертоны, которые не воспринимает ухо человека. Они есть, например, в пении просянок, зеленушек и ряда других птиц.

Подобно истинным музыкантам, птицы для образования звуков не удовлетворяются только голосовым аппаратом, а используют и другие свои возможности: клюв, лапы, крылья и даже хвост. Всем известный дятел – отличный барабанщик. Для своих весенних зазывных концертов самец дятла использует как барабан всевозможные предметы: от сухого дерева до пустых консервных банок и кусочков железа.

Щелканьем клюва исполняют свою любовную серенаду аисты. Это же щелканье клювом на разный манер заменило у этих птиц и голосовое общение. Также общаются и различные хищные птицы (орлы, совы). Они издают этот звук как сигнал угрозы.

Достаточно интересен способ «пения хвостом», встречающийся у бекасов во время брачного полета. Звук образуется за счет вибрации рулевых перьев от встречного потока воздуха. Интересно, что звук, образуемый таким образом, удивительно напоминает блеяние барашка, из-за чего в народе эту птицу и назвали «лесным барашком». Многие птицы издают звуки с помощью крыльев, например, тетерева и глухари во время токования обязательно издают подобное хлопанье.

Однако основным источником звука у птиц все же является нижняя гортань. Возможности голосового аппарата птиц просто фантастические. Вспомним хотя бы прекрасных певцов – соловьев, канареек, жаворонков. В их пении заложена сигнализация для себе подобных. Но не только. В тонком рисунке песни, в ее силе закодирована информация, дающая самке представление о жизнеспособности возможного избранника, которого она ночью да еще и среди веток видеть не может.

Звуки птичьего пения нас очаровывают. Однако они предназначены вовсе не для человеческого уха. Их основная функция – помочь найти птице спутника жизни. Так почему же не подумать, что песня и у нее вызывает чувство, подобное человеческому, – чувство радости.

«Нем как рыба»

Рыбы издают множество звуков, так что вряд ли уместно называть подводное царство «миром безмолвия». Звуки возникают во время движения стай рыб; эти звуки обусловлены гидродинамическими шумами и трением движущихся сочленений скелета рыбы.

Звуки могут быть связаны с газовым обменом. Рыбы регулируют давление внутри плавательного пузыря и кишечника, проталкивая воздух и создавая процессы, подобные тем, что возникают в свистке. Возникают звуки и при захвате и перетирании пищи.


i 115

Ставрида, например, издает звуки, напоминающие собачий лай; морской налим урчит и хрюкает, рыба-барабанщик издает нечто напоминающее барабанный бой; звуки карпа похожи на треск, а речного окуня – на дробь.

Частотный диапазон звуков, создаваемых различными рыбами, лежит в пределах от 20–50 Гц до 10 000—12 000 кГц.

Звуки, которые издают колонии креветок, бывают такими сильными, что вызывают замешательство у экипажей подводных лодок, – на них даже объявляли боевую тревогу, решив, что наткнулись на противника. А косяки еще более мелких рачков – криля – благодаря обмену между ними звуковыми сигналами сохраняют удобный для плавания упорядоченный «шахматный» строй. Звуками различной частоты регулируется скорость движения и дистанция между соседями.

Почему мы не слышим голос рыб? Основная причина в том, что звуковые волны на границе вода – воздух почти полностью отражаются от нее и только один процент энергии звука пересекает границу. Но есть свидетельства, что голос рыб можно услышать. В частности, немало «поющих» рыб, а также «говорящих», в бассейне Амазонки. Среди них можно указать на крупного сома пирару – он издает звуки, напоминающие рев слона. Их можно услышать на расстоянии до 100 м!

Внешне мало примечательная рыба хараки во время нереста издает громкие звуки, похожие на звук мотоцикла. Пение китов-горбачей напоминает собой то кларнет, то волынку, то гобой. Причем киты поют не только в одиночку, но и «хором».

Рыбы, как и морские животные, способны, хотя и не в такой степени, к эхолокации, реагируют на инфраструктуры и ультразвуки. Для приема различных сигналов их организмы обладают тремя системами (гидрофонами), одна из которых – плавательный пузырь, используется как резонатор – усилитель звуков.

Интересен факт реакции, например, акул на звуки, которые создаются не рыбами. Подводный «грохот» или чириканье – это звуки достаточно высокой частоты. Когда под воду опустили излучатель, работающий на частоте 25 Гц, возле него неожиданно всего лишь за две минуты собралась целая стая акул. Что же их заинтересовало? С этой частотой, как оказалось, излучаются звуки, создаваемые при сокращении мышц, в том числе и рыбами.

Слух кошек

Наши домашние друзья кошки имеют много интересных особенностей. Поговорим только о тех из них, которые связаны со слухом.

Прямые ушные раковины, так же как и огромное количество нервных окончаний в слуховых нервах, наделили кошку превосходным слухом, необходимым ей для охоты. Уши кошек имеют 27 мышц и могут поворачиваться на 90°, что дает им возможность точно определить источник звука. Такие уши могут выполнять функции эхолокатора, что позволяет усиливать интенсивность звука.


i 116

Звуковой анализатор у человека может воспринимать звуки, частота которых лежит примерно в пределах от 20 до 20 000 Гц. У собаки он воспринимает звуки частотой до 40 000 Гц, а у кошки – до 55–65 000 Гц. Теоретически звуковой анализатор у кошки может воспринимать звуки частотой до 100 000 Гц. Среди всех наземных млекопитающих это доступно только летучим мышам.

Определенные звуки высокой частоты, то есть ультразвуки, прекрасно воспринимаются кошкой. Так, мыши «общаются» между собой с помощью ультразвуковых сигналов. Кошка способна расшифровывать «язык мышей», легко улавливать мышиные «переговоры», поэтому она всегда точно знает, когда мышь собирается покинуть свою норку.

Обладая таким диапазоном звуковой восприимчивости, кошки способны различать звук в 1/10 тона. Возможно, то, что кошки могут слышать более десяти музыкальных октав, и объясняет тот факт, что многие из них любят слушать музыку.

Кошки, даже когда спят, способны различать огромное количество посторонних шумов и выделять среди них определенный звук: их миски, стука или звонка в дверь. Благодаря тонкому слуху кошки могут отличить звук мотора одного автомобиля от другого. В большинстве случаев кошка способна различить два разных звука, источники которых расположены в метре от нее, на расстоянии 8 см друг от друга под углом 5°.

Для кошек очень характерны звуковые симпатии и антипатии. Каждый из нас может обнаружить, что кошка очень восприимчива к тону нашего голоса. Это может помочь нам контролировать поведение нашего питомца, хотя и не настолько, как скажем, собаки.

Кошка не любит крика, поэтому громко произнесенная команда может заставить ее прекратить свои занятия. Она мгновенно реагирует, когда ее зовут по имени, или на известный призыв «кис-кис», и, как правило, сразу появляется. Но если вознаграждения не будет, маловероятно, что она откликнется на ваш следующий призыв…

Ультразвук

Ультразвук – это продольные волны высокой частоты, начиная от 20 000 Гц. (Конечно ультразвуковым диапазоном считают полосу частот от 20 000 до нескольких миллиардов герц.)

Хотя о существовании ультразвука ученым было известно давно, практическое использование его в науке, технике и промышленности началось сравнительно недавно.

Человеческое ухо не улавливает ультразвук, однако некоторые животные, например летучие мыши, могут воспринимать и излучать ультразвук. Частично воспринимают ультразвук грызуны, кошки, собаки, киты, дельфины. Звуковые радары животных называют сонарами (от английского sound – звук). С их помощью животные могут ориентироваться в пространстве.

Природные сонары

То, что у дельфина очень развит слух, известно уже десятки лет. Объемы тех отделов мозга, которые «заведуют» слуховыми функциями, у него в десятки (!) раз больше, чем у человека (при том, что общий объем мозга примерно одинаков).

Дельфин способен воспринимать частоты звуковых колебаний в 10 раз выше (до 150 кГц), чем человек (до 15–18 кГц), и слышит звуки, мощность которых в 10–30 раз ниже, чем у звуков, доступных слуху человека.

Каким бы хорошим ни было зрение дельфина, его возможности ограничены из-за невысокой прозрачности воды. Поэтому основные сведения об окружающей обстановке дельфин получает с помощью слуха. При этом он использует активную эхолокацию: слушает эхо, которое создается при отражении звуков, издающихся им, от окружающих предметов. Эхо дает ему точную информацию не только о том, где находятся предметы, но и об их размерах, форме, материале. Другими словами, с помощью слуха дельфин воспринимает окружающий мир не хуже, или даже лучше, чем с помощью зрения.


i 117

Слух человека позволяет различать интервалы времени примерно от одной сотой секунды (10 мс). Дельфины же различают интервалы в десятитысячные доли секунды (0,1–0,3 мс).

Два коротких звуковых импульса отличаются друг от друга, если интервал между ними составляет лишь 0,2–0,3 мс (у человека – около 1 мс). Пульсации громкости звука вызывают ответы, когда их частота приближается к 2 кГц (у человека – 50–70 Гц).

Существуют и другие мощные природные сонары – это летучие мыши. Природа наградила их способностью издавать звуки с частотой колебаний выше 20 000 Гц, то есть ультразвуки, недоступные слуху человека. Локатор летучих мышей высокоточный, надежный и ультраминиатюрний. Он всегда находится в рабочем состоянии и во много раз более эффективен, чем локационные системы, созданные человеком. С помощью такого ультразвукового «видения» летучие мыши обнаруживают в темноте натянутую проволоку диаметром 0,12—0,50 мм, улавливают эхо в 2000 раз слабее посылаемого сигнала. На фоне множества звуковых помех они могут выделять звук в необходимом им диапазоне.

Летучие мыши издают и воспринимают звуки с частотой 50 000—60 000 Гц. Этим и объясняется их способность избегать столкновения с предметами даже при отсутствии зрения.


i 118

У летучих мышей ультразвуки обычно возникают в гортани, по строению напоминающей обычный свисток. Выдыхаемый из легких воздух вихрем проносится через нее и с такой силой вырывается наружу, словно он выброшен взрывом.

Давление воздуха, проносящегося через гортань, вдвое больше, чем в паровом котле! Более того, образуемые звуки очень громкие: если бы мы их улавливали, то воспринимали бы, как рев двигателя реактивного истребителя на близком расстоянии!

Не глохнут летучие мыши потому, что у них есть мышцы, которые закрывают уши в момент посылания разведывательных ультразвуков. Безопасность ушей гарантируется совершенством их конструкции: при максимальной частоте следования зондирующих импульсов – 250 в секунду – заслонка в ухе летучей мыши успевает открываться и закрываться 500 раз в секунду.

Поскольку скорость звука значительно превышает скорость движения даже быстрокрылых птиц, эхолокацией можно пользоваться и во время полета. Самым совершенным локатором обладают летучие мыши, развивающие во время охоты большую скорость, постоянно выполняя в воздухе фигуры высшего пилотажа. О качестве «локаторного» слуха свидетельствуют результаты охоты: эти маленькие хищники уже за 15 минут охоты на комаров, мошек и москитов увеличивают свой вес на 10 процентов. «Навигационный прибор» настолько точен, что в состоянии запеленговать микроскопически маленький предмет диаметром всего 0,1 миллиметра.

Дональд Гриффин, исследователь эхолокаторов летучих мышей (кстати, именно он дал это название), считает, что если бы не эхолот, летучая мышь, даже всю ночь летая с открытым ртом, поймала бы по закону вероятности одного-единственного комара…

Сонары есть и у других видов животных. Например, кашалоты, используют ультразвук для поиска скоплений глубоководных кальмаров. Сонар кашалота – это своеобразная «дальнобойная пушка», имеющая длину до 5 м и занимающая почти треть тела животного.

Эхолокация обнаружена у птиц гуахаро, живущих в Америке. Их сонары менее совершенны, чем у летучих мышей и дельфинов. Они работают на относительно низких частотах, а именно в интервале от 1500 до 2500 Гц. Поэтому гуахаро не замечают в темноте объектов, имеющих небольшие размеры. В пещерах, где живут гуахаро, очень шумно. Птицы издают зловещие пронзительные крики, напоминающие плач и стоны, которые почти невыносимы для непривычного уха.

Эхолокацией пользуются и стрижи-саланганы, живущие в Индонезии и на островах Тихого океана. У разных видов саланганов сонары работают на разных частотах: от 2000 до 7000 Гц. Интересно, что, когда птица сидит, ее эхолокационный аппарат не работает; локационные импульсы посылаются только в полете (при взмахивании крыльями). Не работает сонар саланганов и при свете.

Применение ультразвука в технике и медицине

Впервые идея практического использования ультразвука возникла в первой половине ХХ в. в связи с разработкой методов и приборов для обнаружения в глубине моря различных объектов: подводных лодок, рифов, подводных частей айсбергов и т. д. Это было вызвано прежде всего гибелью в 1912 г. суперлайнера «Титаник» и участием подводных лодок в военных операциях во время Первой мировой войны.

На практике для получения ультразвука применяют электромеханические генераторы ультразвука, действие которых основано на свойстве некоторых материалов изменять свои размеры под действием магнитного или электрического поля, создавая при этом звуки высокой частоты.

Благодаря большой частоте ультразвук обладает особыми свойствами. Он сильно поглощается газами и слабо – жидкостями. В жидкости под воздействием ультразвука образуются пустоты в виде мелких пузырьков с кратковременным возрастанием давления внутри них. Кроме того, ультразвуковые волны ускоряют ход процессов диффузии (взаимопроникновения двух сред друг в друга), существенно влияют на растворимость вещества и в целом на ход химических реакций.

Эти свойства ультразвука и особенности его взаимодействия со средой обусловливают его широкое техническое и медицинское применение. Сфера использования ультразвука очень обширна.

Так, широко известен метод гидролокации с помощью ультразвука. Без этого невозможно даже представить себе современное мореплавание. Пучок ультразвукового излучения можно сделать точнонаправленным и по отраженному от цели сигналу (эхо-сигналу) определить направление на эту цель. Измеряя время прохождения сигнала до цели и обратно, определяют расстояние до нее. Подобной эхолокацией пользуются не только для измерения глубины океана и исследования рельефа морского дна, но и для поиска там посторонних предметов.

Современные эхолоты устроены так, что на специальной шкале загорается неоновая лампочка в соответствующей глубине моря под кораблем точке. Эхолот не только предупреждает о наличии скал и мелей, но и позволяет определить местонахождение корабля.

Облучение ультразвуком расплавленных металлов и сплавов позволяет получить более однородную структуру из мелких кристаллов. Это способствует также удалению из них газов, что повышает качество материалов. Ультразвук используют при закаливании сплавов, пайке и сверлении.




С помощью ультразвука можно дробить примеси и неоднородности в веществах. Он помогает также изготовить однородные жидкости в тех случаях, когда простым смешиванием это сделать невозможно (изготовление эмульсий и суспензий).

Важной областью применения ультразвука является так называемый неразрушающий контроль или ультразвуковая дефектоскопия. С помощью ультразвука определяют дефекты (трещины, пустоты, шлаковые примеси и т. д.) в глубине деталей и установок. Дефектоскопы обнаруживают внутренние расслоения и полости размерами в доли миллиметра.

С помощью ультразвука врачи и диагностики проводят обследование больных органов человека. Ультразвуковое излучение (в небольших дозах!) применяется в акушерской практике, когда обследуют женщину – будущую мать и ее еще не родившегося ребенка.

Обнаружено, что ультразвук оказывает разрушающее действие на определенные виды бактерий, что тоже нашло свое применение в медицине и бактериологии.

 

Поиск

ФИЗИКА

ХИМИЯ

Поделиться

Яндекс.Метрика

Рейтинг@Mail.ru