ОСНОВНОЕ МЕНЮ

НАЧАЛЬНАЯ ШКОЛА

РУССКИЙ ЯЗЫК

ЛИТЕРАТУРА

АНГЛИЙСКИЙ ЯЗЫК

ИСТОРИЯ

БИОЛОГИЯ

ГЕОГРАФИЯ

МАТЕМАТИКА

ИНФОРМАТИКА

ГРАВИТАЦИЯ И ЧЕЛОВЕЧЕСКИЙ ОРГАНИЗМ

 

 

Мы с самого рождения присутствуем в окружении силы, которую, тем не менее, почти никогда не замечаем. И связано это с тем, что она постоянна по величине и всегда оказывает на наш организм свое воздействие. Это – гравитация.

Но для того, чтобы человек обратил на нее внимание, потребовалось покорить космос, в котором сила тяжести практически полностью пропадает. Именно после того, как в космос были отправлены животные, а вслед за ними – и человек, было в полной мере осознано, сколь велико влияние гравитационных сил на живые организмы.

 

Сегодня никто не оспаривает тезис, гласящий, что жизнь зародилась в воде. Учитывая хотя бы тот факт, что плотность тела обитателей морей приближается к таковой воды, легко понять, что эти существа находятся в своеобразной невесомости.

Тем не менее, морские позвоночные, особенно рыбы, великолепно приспособлены к жизни в таких условиях: у них достаточно хорошо развиты системы движения и ориентации в трехмерном пространстве.


Космонавты в невесомости на борту МКС



Однако с выходом животных на сушу у них появились серьезные проблемы с силами земного притяжения, то есть с гравитацией. Поскольку на суше выталкивающая архимедова сила отсутствует, возникла насущная необходимость не только поддерживать положение тела в пространстве, но и передвигаться. Атак как крупные животные вынуждены были приподнимать тело над землей, в их организме стали формироваться механизмы, противостоящие силе тяжести.

Они постепенно встраивались почти в каждую систему органов. Со временем появилась не только мощная костно-мышечная система, удерживающая тело над землей, но и органы, обеспечивающие все отделы организма кислородом и питательными веществами: в частности, эффективный сердечный насос, способный гнать кровь вверх. Те же факторы повлияли и на физиологические особенности человека, вставшего на две ноги.

Но каким образом, с помощью каких устройств организму становится известно, что он находится в гравитационном поле, что оно воздействует именно таким, а не иным способом?

У позвоночных животных и человека имеется очень важная гравитационно-чувствительная система: это кровь, сердце и кровеносные сосуды. Поскольку кровь, подчиняясь силе тяжести, стремится опуститься вниз, в организме появились структуры, противодействующие этому. И, в первую очередь, система барорецепторов, регулирующая давление крови в артериях, по которым она поступает в мозг, что для организма жизненно очень важно.

Вообще же барорецептор представляет собой нервное окончание, которое реагирует на механическое растяжение стенок полого органа под воздействием его содержимого: например, крови в кровеносном сосуде.

Так, когда давление крови падает, барорецепторы включают систему, которая начинает препятствовать этому. Однако, когда давление снижается очень быстро, барорецепторы не успевают срабатывать, и тогда человек теряет сознание. С такой ситуацией сталкивались многие. Особенно утром, когда, поднимаясь с постели, у человека вдруг начинает кружиться голова. А вот у лежачего больного, который со временем адаптировался к горизонтальному положению, начинает развиваться гравитационная, или ортостатическая недостаточность…

Когда ученые обратили более пристальное внимание на гравитационный момент в физиологии человека, то они установили, что, помимо барорецепторов, в организме людей имеется еще один очень важный механизм регуляции давления крови: так называемый мышечный насос.

Раньше особого внимания ученые на это не обращали. Хотя специалистам уже давно было известно, что вены, по которым кровь течет от органов к сердцу, не имеют, в отличие от артерий, гладкомышечного слоя, который функционирует как «насос».

В этом случае возникает вполне резонный вопрос: каким же образом происходит проталкивание крови по венам? Чтобы объяснить этот факт, была предложена гипотеза, в которой особая роль в работе сосудистой системы отводилась мышечному тонусу.

Дело в том, чтобы удерживать человеческое тело в состоянии покоя или во время перемещения, мышцы конечностей и брюшного пресса должны находиться в постоянном напряжении, или в тонусе. И именно этот мышечный тонус участвует в чисто механическом проталкивании крови по кровеносным сосудам. Если же этот тонус падает, возникают проблемы с проталкиванием крови.

Из всего вышесказанного следует, что функционирование сердечно-сосудистой системы зависит от мышечного тонуса. В таком случае, от чего же зависит сам мышечный тонус?

Прежде чем ответить на этот вопрос, заметим, что наибольшей чувствительностью к изменениям гравитации обладает камбал о-видная мышца. Она расположена в глубине системы мышц, которые находятся в задней части голени, между двумя головками икроножной мышцы.

Американские исследователи установили, что на камбаловидную мышцу при кратковременной механической нагрузке, например, во время прыжка, приходится до 10 масс тела человека.

А вот когда человек находится в невесомости или в экспериментальных условиях, приближенных к этому физическому состоянию, тонус камбаловидной мышцы очень быстро снижается. И вот тут возникает очередной вопрос: каким же образом мышца узнает об изменении уровня гравитации?

Конечно, в этом случае дело не обходится без сигналов из нервной системы. Однако и в самих мышцах, скорее всего, есть особые клеточные и молекулярные механизмы, контролирующие ситуацию с земным притяжением.

Несмотря на то, что ученые только в последнее время обратились к более интенсивному их изучению, уже появились сведения о наличии механочувствительных каналов в мембране клеток.

Кроме того, удалось установить присутствие в нашем теле абсолютно нового органа чувств: сенсорной системы, или системы восприятия опоры. Как раз-то именно она и реагирует на изменение гравитации.

Роль же чувствительных элементов в этих органах чувств играют так называемые рецепторы глубокой кожной чувствительности, или тельца Фатера-Пачини, которые находятся в подошвах ног. Но как именно работают эти структуры, пока неизвестно, хотя их открыли еще в XIX веке.

Физиологи считают, что особые структуры, реагирующие на опору, о любом механическом воздействии сигнализируют в определенные области головного мозга, а оттуда подаются команды в специальные клетки спинного мозга – мотонейроны, влияя на их состояние. И в зависимости от силы, с которой опора воздействует на тельца Фатера-Пачини, включаются или выключаются системы, управляющие работой тех мышц, которые поддерживают позу. Эту систему поддержки тела называют позотонической. А вот благодаря локомоторной мышечной системе осуществляются быстрые и резкие движения в пространстве.

Следует отметить, что гравитация влияет не только на положение тела в пространстве и передвижение крови в сосудах. От нее зависит и внутренний состав человеческого тела.

То, что человек на 70 % состоит из воды, факт хорошо известный. Но в процессе эволюции появились также механизмы, которые поддерживают еще и постоянный объем жидкости в теле.

А ведь до полетов человека в космос ученые даже не подозревали, что постоянство состава и объема жидкости в теле связано с гравитацией. Но вскоре космические биологи установили, что когда сила тяжести снижается, в организме начинает уменьшаться и объем внеклеточной и внутрисосудистой жидкости.

Если же космонавт проводит на орбите достаточно много времени, то по возвращении на Землю у него возникает состояние, при котором сердце не может нормально обеспечивать кровью головной мозг.

И причина этого даже не в том, что у космонавта существенно снижается мышечный тонус. Оказывается, в его сердечно-сосудистой системе просто слишком мало крови, чтобы заполнить основные кровеносные магистрали тела.

Казалось бы, из этой ситуации есть простой выход: космонавту просто-напросто необходимо выпить воды или раствора солей. Однако ученые выяснили, что системе регуляции водно-солевого обмена необходимо определенное время, чтобы восстановиться до нормального (земного) состояния. И поэтому в первое время жидкость в организме не задерживается.

Более того, в условиях космоса в коже и соединительных тканях человека накапливается натрий, но не в ионной форме, а в соединении с белком. Такой же способ «запасания» минеральных веществ характерен и для млекопитающих, которые погружаются в зимнюю спячку.

В связи с этим явлением возникает еще один вопрос: почему в условиях невесомости меняется состав костного скелета?

А все дело в том, что вымывание кальция из костей происходит неравномерно. Больше всего его теряют те участки кости, которые формируют суставы, то есть подверженные наибольшей нагрузке в земных условиях. Кроме того, установлено, что нижние конечности кальция теряют больше, чем верхние, а в черепе кальций и вовсе откладывается.

Установлено также, что на восстановление первоначального минерального состава требуется в 2–3 раза больше времени, чем длится космический полет, и после продолжительных космических экспедиций этот процесс может растянуться на годы.

Поиск

ФИЗИКА

ХИМИЯ

Поделиться

Яндекс.Метрика

Рейтинг@Mail.ru