Rapidstresser the bestIP booter / Stresser of 2021
Объект, совершающий колебательные движения, перемещается взад и вперед вдоль линии.
• Амплитудой его движения называется максимальное перемещение от центра колебательных движений.
• Периодом колебаний Тп называется время, которое требуется для завершения цикла колебаний (движение от одной крайней точки к другой и обратно).
Перемещение тела, совершающего колебательные движения, называется простым гармоническим движением, если ускорение пропорционально перемещению от центральной точки колебаний. Это условие можно выразить в виде уравнения «ускорение = — коэффициент · перемещение», где минус означает, что ускорение всегда направлено к центру, а перемещение измеряется от центра. Коэффициент пропорциональности в этом уравнении равен квадрату круговой частоты ω, которая равна 2π/Тп. Таким образом, при гармоническом колебании ускорение α и перемещение s должны соответствовать уравнению α = — ω2s. Ясно, что ускорение тела достигает максимального значения в точке наибольшего удаления от центра колебаний.
В системе, где тело массой m совершает колебания вследствие действия одной или нескольких пружин, сила, возвращающая тело в точку равновесия, зависит от степени растяжения пружин. Система пружин подчиняется закону Гука, а именно: сила растяжения равна he, где е — деформация (растяжение) пружины, k — постоянный коэффициент. Таким образом сила, стремящаяся восстановить исходное состояние, F = — ks для перемещения s от точки равновесия. Из второго закона Ньютона (F = та) получаем а = F/m = — (k/m)s. Это гармоническое колебательное движение и k/m = ω 2. Следовательно, период колебаний Тп = 2π/ω = 2π(m/k)1/2.
Если масса увеличивается или пружина становится слабее, то период колебаний также увеличивается. Любая система, состоящая из одной или нескольких пружин, вызывает колебания, период которых рассчитывается по приведенной выше формуле.